
Parallelizing Linear Recurrent Neural Nets Over Sequence Length
Eric Martin and Chris Cundy*

*UC Berkeley

Abstract

RNN training and inference generally takes time linear in the se-
quence length because of non-linear sequential dependencies. We
show the training and inference of RNNs with only linear sequential
dependencies can be parallelized over the sequence length using the
parallel scan algorithm, leading to rapid training on long sequences
even with small minibatch size. We use this insight and a parallel
linear recurrence CUDA kernel to accelerate several state of the art
RNN architectures by up to 9x and to solve a synthetic sequence
classification task with a one million time step dependency.

Introduction

Large minibatches are necessary for computational performance but
create large memory requirements and damage model generalization
ability.
Linear RNNs and convolutional models such as strongly typed RNNs,
Wavenet, Bytenet, Quasi-RNNs, and simple recurrent units have
achieved state of the art results on many sequential tasks with rapid
training times.
Given xt, λt can compute ht = λtht−1 + xt for t = 1 . . . T on p proces-
sors in O(T/p + log(p)) with the classic parallel scan algorithm.
Backpropagation of gradient can also be parallelized with the same
algorithm. We implemented a parallel linear recurrence operation in
CUDA and integrated it with TensorFlow.

Figure 1: Example of parallelizing cumulative sum over 3 processors

Gated Impulse Linear Recurrence

Given a fast algorithm for evaluating linear recurrences, we introduce a
new linear recurrent layer called gated impulse linear recurrence
(GILR)

gt = σ(Uxt + bg)
it = τ (V xt + bz)
ht = gt � ht−1 + (1 − gt) � it

Linear Surrogate RNNs

RNNs have a transition function st = f (st−1, xt). st serves dual roles
as a summary of the past as well as the output of the unit. Non-linear
f in units such as vanilla RNN and LSTM prevents parallelization over
sequence length.
Replacing the summary of the past st−1 with a linear surrogate s̃t−1
allows the easy adaption of any existing RNN architecture for paral-
lel computation. Several recent linear RNNs can be viewed as linear
surrogate RNNs.
The state of an LSTM consists of (ct, ht). ct is already computed by
linear recurrence, so a linear surrogate LSTM must only compute a
linear h̃t. A GILR-LSTM uses h̃ = GILR(x)

Training Runtime Results

Seq. Len. SRU QRNN(2) QRNN(10) GILR-LSTM
16 0.28 0.38 0.78 0.61
256 0.84 0.86 0.99 0.91
4,096 1.38 1.18 1.05 0.98
65,536 9.21 6.68 2.05 1.41

Table 1: Parallel kernel speedup compared to serial linear recurrence for a variety of
LS-RNNs All models use two stacked RNN layers with 256 hidden units, keeping the
GPU memory usage constant by fixing bT = 65, 536 for minibatch size b and sequence
length T . QRNN(k) refers to a QRNN with filter size k.

Figure 2: Throughput (thousand steps/s) for 2 layer 256 unit cuDNN LSTM and
GILR-LSTM as a function of batch size and sequence length. LSTM throughput is
independent of sequence length. GILR-LSTM can achieve much greater throughput at
small batch sizes.

Learning Long-Term Dependencies

Task: Learn to remember 1 bit of information for T time steps.
We measured time until convergence for a 2 layer GILR-LSTM and
LSTM for T ranging from 1,000 to 1,000,000.
The GILR-LSTM converged in over 6x less wall time. We demon-
strated a GILR-LSTM could learn a one million time step se-
quential dependency, which is at least a 100x longer dependency than
previously learned.

Figure 3: Accuracy on the memorization task with 8,192 sequence length

Conclusion

Parallel linear recurrence enables rapid learning on extremely long se-
quences at small minibatch sizes. A significant portion of deep learn-
ing’s current success can be attributed to highly efficient matrix multi-
plication and convolution kernels. We hope that parallel linear recur-
rence can join these algorithms and be to large scale sequence modelling
what fast convolution is to image recognition.
Possible future work includes parallel training of memory augmented
models, applications to autoregressive flows, and replacing decay vector
λt with structured matrix Λt.

References

D. Balduzzi and M. Ghifary. Strongly-typed recurrent neural networks.
G. E. Blelloch. Prefix sums and their applications.
J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural networks.
N. Kalchbrenner, et al. Neural machine translation in linear time.
T. Lei, Y. Zhang, Training RNNs as fast as CNNs.
A. van den Oord, et al. Wavenet: A generative model for raw audio.


