
Investigating Variational Gaussian
Process State-Space Models with

Gaussian Likelihood

Christopher J. Cundy
Christ’s College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for part III of the

Computer Science Tripos

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: cjc208@cl.cam.ac.uk

June 27, 2017

Declaration

I Christopher J. Cundy of Christ’s College, being a candidate for Part III of

the Computer Science Tripos, hereby declare that this report and the work

described in it are my own work, unaided except as may be specified below,

and that the report does not contain material that has already been used to

any substantial extent for a comparable purpose.

Total word count: -

Signed:

Date:

This dissertation is copyright c©2017 Christopher J. Cundy.

All trademarks used in this dissertation are hereby acknowledged.

Abstract
Investigating variational Gaussian process state-space
models with Gaussian likelihood

We have demonstrated a principled method to infer the properties of dy-
namical systems, the doubly variational Gaussian process state-space model
(GP-SSM): combining previous work on variational approaches to GP-SSMs
with a further variational assumption which allows a fully analytic lower
bound on the marginal likelihood.

Previously unpublished work on this topic is put into context, and extended
to deal with testing and prediction, which can be achieved fully analyti-
cally. We show that the variational GP-SSM is able to learn the dynamics
of complicated systems such as the cart-pole, and is also able to infer un-
derlying processes, such as integrating an impulse twice to attain a position,
and finding some underlying structure in the Bouc-Wen nonlinear system
identification dataset.

In a comparision to an autoregressive (AR) model, the GP-SSM was not
much better than the AR in a 5D cartpole problem, whilst being much more
costly to train and test. However, the system fared better than the AR model
when two of the underlying variables were hidden: it was able to infer their
existence and beat the AR model in initial predictions. While both the AR
and GP-SSM model performed badly after a dozen or so predictions, the
GP-SSM also drastically underestimated its own uncertainty (as is common
in variational approaches to Bayesian learning). As in previous work with
VFE approximations, we find that progress is stymied by technical issues in
performing the optimisation, including the model getting stuck in local min-
ima, and sensitivity to initial conditions. Future work will focus on ensuring
robustness of this optimisation, and clarifying the ability of the model to
infer entirely unseen latent processes.

Word Count: 9,988.

Contents

1 Introduction 1

2 Background 3
2.1 Dynamical Systems . 3
2.2 Multivariate Gaussian Distributions 4
2.3 Gaussian Processes . 5
2.4 Sparse GPs . 7
2.5 Gaussian Process State-Space Models 8
2.6 The Variational GP-SSM . 9
2.7 Variational Optimisation of a GP-SSM 10
2.8 Autoregressive Models . 13

3 Related Work 15

4 Design and Implementation 19
4.1 Implementation . 21

4.1.1 Transition Function Terms 22
4.1.2 Entropy . 24
4.1.3 Likelihood . 24
4.1.4 Complexity . 25

4.2 Analytic Prediction . 27
4.2.1 Predicting . 29

4.3 Datasets . 29
4.3.1 1D Example . 29
4.3.2 Cart Pole . 30
4.3.3 Bouc-Wen . 32

5 Implementation and Evaluation 35
5.1 Learning . 35

5.1.1 1D Toy Model . 35
5.1.2 Inference of Hidden States 41

i

5.2 Cart Pole . 42
5.2.1 Reduced Cart Pole . 42

5.3 Bouc-Wen . 47

6 Summary and Conclusions 55

ii

List of Figures

2.1 A plot from C. E. Rasmussen and Williams 2005 showing
Gaussian Process regression. On the left, the prior distri-
bution over functions is shown, along with several examples
of functions drawn from that distribution. On the right, the
posterior over functions after several data points have been
observed. Intuitively, the posterior is tighter near the obser-
vations (as we know the function must have a value near the
observed value), and looser further away from the observations. 6

2.2 A graphical model for the conditional dependencies in the
Gaussian Process State Space Model. 8

2.3 A graphical model for the conditional dependencies in the 3rd
order Gaussian Process Autoregressive Model, in training. . . 14

4.1 Showing the transition function used in the 1D case. Gaussian
noise was added to the transition function so that the process
was partially schochastic . 30

4.2 Some simulated trajectories in the 1D case. The three trajec-
tories have the same initial condition, and have added process
or observation noise, which are both Gaussian with mean zero
and standard deviation one-half. The two noises have very dif-
ferent effects, with process noise pushing the timeseries onto
completely different trajectories while the observation noise
simply obscures the real state. We clearly need our models to
distinguish the two noises . 31

iii

5.1 A trained model in the almost complete absence of noise (|Q| ∼
10−4, R ∼ 10−4). Trained with 50 data points and 20 inducing
inputs, the model learns the correct shape of the transition
function. The upper panel shows the resulting Gaussian pro-
cess over the transition function, as well as a few of the indi-
vidual q(xt,xt+1) joint distributions. The lower panel shows
the observed timeseries. 37

5.2 A trained model with high process noise and observation noise
(R = |Q| = 0.25). Here the trained states are less able to pick
out the correct states. However, the inferred states are gener-
ally closer to the actual state than the observation. The model
includes the true transition function in the 95% confidence in-
terval of possible dynamics. We can see that the right-hand
side of the transition function is more incorrect, which we can
understand by the steeper transition function leading to more
variation in the output for a given variation in the input. . . . 38

5.3 Predictions from a low-noise regime. We can see that the
uncertainty in the predicted states increases as the points go
into the future. Also evident is the inaccuracy made by the
assumption of Gaussian errors: the distributions are forced
to spread their uncertainty over areas which are far from the
transition function, and so extremely unlikely for the state to
ever reach those regions of the state space. However, the model
does have a consistent handle on its own uncertainty, with e.g.
its uncertainty decreasing dramatically at time points 7 and
11. We can see this is because the previous states are at points
where the transition function is flat, so any states in the same
region will map map to the same points, reducing the error. . 39

5.4 Predictions from the variational GP-SSM and an order-2 AR
model. We see that both models are able to accurately capture
the dynamics of the system, able to predict several points for-
ward into the future. We also see that both methods are able
to give a fairly consistent estimation of the error in their esti-
mates. Figure 5.2 gives a quantitative account of the accuracy
of both predictions . 43

5.5 RMSE for predictions t − 5 steps ahead on the 5d cart-pole
dataset, averaged over forwards predictions from each time
point in 10 test sequences. The two RMSEs are very similar -
as we would perhaps expect as the AR model is in some sense
the GP-SSM without latent variables. 44

iv

5.6 Predictive power of the two competing methods on the 5D
cart-pole set. Here we see that the GP-SSM is able to make
better predictions for the first few time points, but that it
quickly reverses track and makes bad predictions, whilst the
AR model makes fairly noncommittal predictions for all future
predictions. Shown are the joint log probability t steps ahead
on the 3d cart-pole dataset, averaged over forwards predictions
from each time point in 10 test sequences. 45

5.7 A graphical model for the conditional dependencies in the GP-
SSM trained on the 3d cart-pole dataset, with 6 latent states.
Looking at the mapping from latent to observation space, we
see that states 1,2,3 are coupled to the corresponding obser-
vation states 1,2,3, whilst states 4,5,6 are not coupled to the
observation to any degree. 47

5.8 The transition functions for states 1 and 4, for the variational
GP-SSM trained on the reduced cart pole dataset. These two
states essentially function as an integrator for the force (which
is the input state 7), encoding state 1 as the position of the
center of mass. The function is known with great certainty, as
the error bars (shown in faint black) are very tight around the
function. 48

5.9 An example of a transition function for a badly optimised
model of the reduced cart-pole. The transition function here
has very high error bars, which imply that the function merely
adds noise to the latent states. We can see how the model
could shut down a GP in such a way if it wasn’t providing
any predictive power. In such a case we should note that the
‘observation noise’ in the system could be made from contri-
butions from the R matrix and the Q matrix in the dead GP. 49

5.10 Predictions from the variational GP-SSM and an order-2 AR
model. We see that both models are able to accurately capture
the dynamics of the system, able to predict several points for-
ward into the future. We also see that both methods are able
to give a fairly consistent estimation of the error in their es-
timates. The following two plots show a quantitative analysis
of the errors. 50

5.11 RMSE for the predictions on the 3d cart-pole dataset, aver-
aging over forwards predictions from each time point in 10
test sequences. We see that the GP-SSM has a clear advan-
tage over the AR(2) in predicting the position variable, but is
comparable in the sin and cosine predicitons. 51

v

5.12 Negative joint log probability for the two predictive methods,
averaging over forwards predictions from each time point in
10 test sequences, predicting t points into the future. We see
that the GP-SSM’s predictions are more precise and accurate
at first, but that they start to become inaccurate whilst un-
derestimating the uncertainty in the predictions. The AR(2)
model does not make very precise predictions, but has a well-
calibrated grasp of its own certainty. 51

5.13 The structure of the model found by the GP-SSM when trained
on the Bouc-Wen dataset. The only variable that is coupled
to the likelihood is state 1. Although somewhat hard to in-
terpret, it seems as if the model is picking up the latent z
state, with the state 4 (initialised with an estimate of ż), not
depending on state 1, y, at all. 52

5.14 The transition function for state 4 in the Bouc-Wen dataset.
The GP-SSM picks up a nonlinear transition function, albeit
with a large amount of uncertainty. 53

5.15 Predictions from the Bouc-Wen dataset. For the ‘seed’ time-
series, 30 points were shown to the model, due to worries about
the model being able to pick up the states of the three latent
variables with only a handful of observations. Unforunately
the predicitions are not very good, with the values rapidly di-
verging from the observations. The model does retain knowl-
edge of its own uncertainty, which is very high. 54

vi

List of Tables

2.1 Comparison of the two leading sparse approximations to Gaus-
sian Processes, Variational Free Energy (VFE), and Fully In-
dependent Training Conditional (FITC), with comments sourced
from Bauer, Wilk, and C. E. Rasmussen 2016. 7

4.1 Showing the key variables in the implementation. 21

5.1 Comparison of the variational GP-SSM to the order two au-
toregressive model in the 1D case, with process or observation
noise. In both cases, the given noise had a standard deviation
of 0.5 and the other noise was kept at a standard deviation of
0.01. We see that the GP-SSM is able to do well in the pres-
ence of observation noise, and not too badly in the presence
of process noise. We report both the root mean square error
and the negative joint log probability of the observations. . . . 39

5.2 Showing the effect of imposing a restriction on the process
noise when optimising the negative log marginal likelihood
(NLML). Here we use 100 data points, moderate noise with
|Q| = |R| = 10−2, and 30 inducing inputs. Examining the
length-scales in the third case shows that the model has shut
down one of the dimensions, with the C matrix dominated by
the element mapping the active dimension to the likelihood. . 42

5.3 Models with differing numbers of latent states on the 5-dimensional
cart-pole dataset, and the optimised NLML found. We find
that the model identifes three hidden states, presumably cor-
responding to the velocities of the three observed states. . . . 44

5.4 Successive models trained on a 400-timepoint subset of the
BoucWen dataset, with varying underlying latent dimension.
We are able to clearly see the model pick out the 4-dimensional
case as the most likely. This gives us further reason to think
that the GP-SSM is picking out the dynamics. 52

vii

viii

Chapter 1

Introduction

Many interesting problems can be formulated as dynamical systems, where

noisy glimpses are observed from some underlying process. Existing ap-

proaches to these problems are very data-inefficient, requiring many thou-

sands of samples to obtain any idea of the system’s dynamics. This hinders

their usefulness in settings where we have restrictions on the amount of data

we can observe: such as computationally intensive simulations, or when lim-

ited by latency with the outside world. We wish to develop a principled

method to infer characteristics of dynamical systems from observations, try-

ing to use all the relevant information optimally. Furthermore, we would

prefer if such a method were able to deal with complicated nonlinear sys-

tems, such as turbulent aircraft aerodynamics.

In this dissertation, such a method is developed, using a Gaussian process

to model the complicated nonlinear functions governing systems. Previous

work on variational Gaussian process state space models from R. Frigola is

described, and C. Rasmussen’s (unpublished) implementation of a doubly

variational GP-SSM is described. This implementation is then extended to

fully cover the range of training, testing, and prediction; comparison to the

state of the art is reported. We describe successes in inferring underlying

high-dimensional processes when presented with low-dimensional represen-

tations of a dynamical system, and give a principled estimation of the di-

1

mensionality of the latent states.

The variational GP-SSM serves as a useful tool in the quest to develop

general-purpose problem-solving algorithms, especially where we have a large

amount of computing power or time and we wish to extract all the informa-

tion from a small amount of data.

2

Chapter 2

Background

2.1 Dynamical Systems

A dynamical system is a very general class of mathematical problems in which

a system is represented as a vector xt at time t in an n-dimensional space.

The dynamics of the system are encoded in a transition function which maps

a state at time t to the state at time t+ 1.

As a simple example, we can consider the system of an ideal pendulum un-

der gravity, where given the state of the system at time t, we can find the

state of the system at a later time t′. We require two independent pieces

of information to characterise the state of the system, such as the angular

displacement and the angular velocity.

The least number of parameters required to uniquely define a dynamical

system’s state is known as the dimensionality of the system, and determines

many of its properties. For instance, a theorem by Poincare and Bendixson

1901, shows that chaotic behaviour only occurs for continuous dynamical

systems of dimension 3 or greater.

Although some systems, such as the pendulum, may be solved analytically,

finding exact expressions for the state in the future, more general systems are

3

analytically impossible to solve and so must be approached in an approximate

manner.

Dynamical systems are a very general framework in which to explore the evo-

lution of systems, but they have a definite structure which can be exploited.

That is, instead of attempting to directly predict future trajectories of the

system from all of the past observations, we can try to learn the underlying

transition function from the past observations, predicting future observations

by using this inferred function.

However, typically transition functions of dynamical systems are highly non-

linear. For instance, the simple pendulum example described above cannot

be solved algebraically when the angles involved become large.

We can deal with such systems in several different ways. One approach

is to find a set of nonlinear transformations which simplify the function,

i.e. learn a convenient representation. This is the approach taken by deep

learning systems. In the pendulum example above, we can represent the

state transformation more conveniently in momentum-energy phase space.

We can also use an approach that can explicitly model complicated nonlinear

functions. In the following work we use Gaussian Processes as a powerful tool

to directly handle these functions.

2.2 Multivariate Gaussian Distributions

Since we will make heavy use of Gaussian distributions, it is worth reiterating

several key results.

We will use the result of conditional dependence of a Gaussian, i.e. given

that a vector x ∼ Nx(µ,Σ), with

x =

(
x1

x2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ>12 Σ22

)
, (2.1)

4

the conditional probability p(x1|x2) also follows a normal distribution pa-

rameterised with µ′,Σ′, where

µ′ = µ2 + Σ>12Σ
−1
11 (x1 − µ1) and Σ′ = Σ22 −Σ>12Σ

−1
11 Σ12. (2.2)

We will come across a few complicated expressions involving kernel matri-

ces that are actually denoting a very simple conditional dependence when

refactored into this form, so this equation is worth keeping in mind.

2.3 Gaussian Processes

A Gaussian Process is a collection of variables, of which any finite linear

combination has a joint Gaussian distribution: see C. E. Rasmussen and

Williams 2005 for a comprehensive description. The most natural motivation

for their use in machine learning may be to view them as a generalisation of a

radial basis function (RBF) model. In an RBF model, the predicted value of

a function at a point is computed from a linear combination of a finite number

of Gaussians, centred at points in the prediction space. In a Gaussian process,

we have such a contribution from every point in the space, and our vector of

weights in the RBF case is replaced with its infinite-dimensional analogue -

the covariance function K(x1,x2) giving the contribution to the prediction

of x1 from x2. Excitingly, after marginalising out the predictions from all

points in space, we are left with a Gaussian describing the distribution of

the predicted value at the point we are interested in. This allows us to

naturally capture our uncertainty in point estimates. Furthermore, if we try

to learn a function producing data with a GP, as a nonparametric method,

they do not make a maximum-likelihood estimation of any parameters of the

function. Instead we get a distribution over all possible functions, conditioned

on the points that we have observed. The choice of covariance function K

allows us to encode very general assumptions about the properties of the

function we are trying to predict, such as differentiability, periodicity, etc.

GPs are a very good choice for our representation of the state space model

5

transition function, as they provide a full description of the uncertainty in the

estimation of the transition function, instead of a single maximum likelihood

estimation.

See figure 2.1 for an illustration of Gaussian process regression and the in-

tuitive way which a GP naturally captures the increasing uncertainty of the

prediction as we head further from the observations.

Figure 2.1: A plot from C. E. Rasmussen and Williams 2005 showing Gaus-
sian Process regression. On the left, the prior distribution over functions is
shown, along with several examples of functions drawn from that distribu-
tion. On the right, the posterior over functions after several data points have
been observed. Intuitively, the posterior is tighter near the observations (as
we know the function must have a value near the observed value), and looser
further away from the observations.

However, GPs do have considerable disadvantages. The main obstacle to

their application is the computational complexity of prediction, which in-

volves inversion of a matrix and goes as O(n3) for n observed data points.

Recent work has provided many different sparse approximations to a full

GP, which introduce M inducing inputs. The output of the GP is condi-

tioned on these inputs instead of the full number of observations, reducing

the complexity of prediction to O(nM2).

Recent work such as Titsias 2009 has provided a variety of techniques to

choose these inducing inputs while preserving as much information as possi-

ble.

6

2.4 Sparse GPs

The main drawback of Gaussian Process methods is their computational

complexity, which can be reduced with sparse methods. Central to these

approaches is the question of how the set of inducing inputs z is chosen.

Although early approaches to sparse methods included obvious choices such

as choosing a simple subset of the data points, more sophisticated meth-

ods allowed the inducing inputs themselves to be treated as parameters for

the GP, and jointly optimised along with the hyperparameters of the GPs.

The two predominant sparse methods are the Fully Independent Training

Conditional (FITC), introduced by Snelson and Ghahramani 2006, and the

Variational Free Energy (VFE) approach, introduced by Titsias 2009. We

can summarise the key properties of the two approximations in table 2.1.

Table 2.1: Comparison of the two leading sparse approximations to Gaussian
Processes, Variational Free Energy (VFE), and Fully Independent Training
Conditional (FITC), with comments sourced from Bauer, Wilk, and C. E.
Rasmussen 2016.

VFE FITC

Noise Variance Can Severely Underestimate Generally Overestimates
Additional Inducing Inputs Can Ignore Always Improves Performance
Many Inducing Inputs True GP is Global Minimum True GP is not Global Minimum
Optimisation Can be Difficult to Optimise Easy to Optimise

While the FITC method often performs well in practice, if aggressively op-

timised it can give somewhat pathological results with wildly oscillating

amounts of noise. In this work, we follow the approach of Frigola in using a

VFE approximation, as the guarantee that the approximation to the true GP

always gets better if we add more inducing inputs provides a straightforward

method to trade off increased computation for increased accuracy. Of course,

knowing that the sparse approximation is close to the exact answer if we use

enough inducing inputs doesn’t let us know if we have used enough inputs

or not. Along with the technical difficulties that can occur in optimising the

VFE bound, we should keep in mind the danger of using too few inducing

inputs.

7

2.5 Gaussian Process State-Space Models

Knowing which variables depend on each other in a model is crucially im-

portant. This can be summarised concisely by a graphical model (see Bishop

2006 for more details). A Gaussian process state-space model is described by

the model in figure 2.8. We follow the convention in Dietz 2010, with shaded

circles representing observed variables, unshaded circles representing latent

variables, and a thick black line representing variables drawn from the same

Gaussian process. Note that the thick line implies that functions drawn from

the GP are conditioned on all the latent x states, not just the immediately

preceding one. The diagram shows that the central object in our model is the

Figure 2.2: A graphical model for the conditional dependencies in the Gaus-
sian Process State Space Model.

. . . f t

xt−1

yt−1

ut−1

f t+1

xt

yt

ut

f t+2

xt+1

yt+1

ut+1

xt+2

yt+2

. . .

inferred transition function f , which is described by a distribution over func-

tions according to a Gaussian process. The latent state at a time t is given

by evaluating the transition function on the state at time t− 1, (along with

some deterministic control inputs u and adding some noise (process noise)).

The observations are then obtained from the likelihood function (generally

expressed as a parametric function p(yt|xt, θy).)

Crucially, the latent process and state is entirely unobserved, and inferred

from the observations.

8

The model is then described with the following conditional dependencies, as

described by Frigola 2015

f(x) ∼ GP(mf (x), kf (x,x
′)), (2.3)

x0 ∼ p(x0), (2.4)

f t = f(xt−1), (2.5)

xt|ft ∼ N (f t, Q), (2.6)

yt|xt ∼ p(yt|xt, θy). (2.7)

In this formulation, we clearly separate out the uncertainty due to the lack of

knowledge of the dynamics of the system, which is given by the uncertainty

in the predictions of f from the GP in equation 2.3; the uncertainty due

to measurement error, which is given by the parameters θ of the likelihood

function in equation 2.7; and the uncertainty due to stochasticity in the

process itself, which is described by the covariance matrix Q in equation 2.6.

Specifying the conditional dependencies of the variables in the model tells us

exactly how we should invert the generative process of the model to infer the

underlying states using Bayes’ theorem.

2.6 The Variational GP-SSM

We can read off diagram 2.8 to see that the joint probability of the model is

p(y,x,f) =
T∏
t=1

p(yt, |xt)
T∏
t=2

p(xt, |f t)p(f t|f 1:t−1,x1:t−1). (2.8)

In order to speed up inference when there are many data points, augmented

inputs z and targets v = f(z) are chosen so that the augmented joint prob-

ability is

p(y,x,f ,v) = p(y|x)p(x,f |v)p(v). (2.9)

9

Unfortunately exact inference in this model is completely intractable. A

variety of methods for overcoming this have been proposed, including using

sampling methods, or variational approaches.

2.7 Variational Optimisation of a GP-SSM

Methods to perform approximate Bayesian inference generally fall into two

camps: numerical sampling techniques, and algebraic variational techniques.

Whilst sampling techniques are typically guaranteed to result in the exact

posterior, given enough time to converge, variational approaches rely on a

specific assumption about an approximate distribution (such as factorisation

properties or a chosen functional form), which limit the accuracy of the ap-

proximation: if the variational assumption is not good, then the variational

approach will not do very well. However, variational approaches result in

an analytic solution which often gives more insight than a numerical solu-

tion, even if the numerical solution is more accurate. In Frigola 2015, the

derivation of the variational GP-SSM is described, which we reproduce in

this section.

In the variational approach, we wish to find the most probable model (i.e. the

values of the inducing inputs and latent parameters) given the observations

we have of the system. Although we are not able to compute the probability

of the model directly, the standard variational approach (see Bishop 2006)

allows us to derive a lower bound for its value, namely

log p(y|θ) ≥
〈

log
p(x,f ,v,y)

q(x,f ,v)

〉
q(x,f ,v)

, (2.10)

where v are our chosen inducing targets. Note that we have chosen q as an

approximating distribution to the real probability p(x,f ,v).

Substituting in the expression for the joint probability of the model, this is

10

〈
log

p(v)p(x0)
∏T

t=1 p(yt|f 1:t−1,x0:t−1,u)p(yt|xt)p(xt|f t)
q(x,f ,v)

〉
q(x,f ,v).

(2.11)

In order to make the following equations tractable, a suitable choice of

q(x,f ,v) is needed. We choose

q(x,f ,v) = q(v)q(x)
T∏
t=1

p(f t|f 1:t−1,x0:t−1,v). (2.12)

The terms which are dependant only on f cancel out leaving us with a much

simpler lower bound,

〈
log

p(v)p(x0)
∏T

t−1 p(ytxt)p(xt|f t)
q(v)q(x)

〉
q(x,f ,v).

(2.13)

Our assumption of the factorisation of p(x,f ,v) is the variational assump-

tion, and is the key assumption made in the whole derivation. What is the

content of the assumption? We are assuming that the probability of a func-

tion f is conditional only on previous function draws, the inducing inputs,

and previous latent states. We are also assuming that the probability of v

doesn’t depend on the latent state x. This seems to be a very reasonable

assumption, especially when there are sufficent inducing inputs, given that

the zs are simply there to support the GP.

Substituting in our choice, we find that the evidence lower bound (sometimes

known as the ELBO) is given by a sum of different terms,

L(q(v), q(x),θ) = −KL(q(v)||p(v)) +H(q(x)) + 〈log p(x0)〉q(x0)
(2.14)

+
T∑
t=1

〈
〈log p(xt|f t)〉p(f t|xt−1,v)

〉
q(x)q(v)

+ 〈log p(yt|xt)〉q(x) ,

(2.15)

11

where KL(p, q) is the Killback-Leibler divergence between two probability

distributions p, q, and H is the entropy.

It is possible to prove that the functional form of the distribution for v

which maximises the lower bound is a multivariate Gaussian. This extremely

fortunate result doesn’t require any asumptions further to the factorisation

of q(v) made above. Furthermore, the mean and covariance of q(v), µ,Σ,

are both functions of the two sufficient statistics

Ψ1 =
T∑
t=1

〈
K>xt−1,z

Q−1xt
〉
q(xt−1:t),

Ψ2 =
T∑
t=1

〈
K>xt−1,z

Q−1Kxt−1,z

〉
q(xt−1),

(2.16)

If we compute the expectations over q(v), we find that the lower bound on

the evidence is

L(q(v), q(x),θ) =−KL(q(v)||q(v)) +H(q(x)) + 〈log p(x0)〉q(x0)
(2.17)

+
T∑
t=1

(
−1

2

〈
(Q−1(Bt−1 +At−1ΣA

>
t−1))

〉
q(xt−1)

)
(2.18)

+ 〈logN (xt|At−1µ,Q)〉q(xt−1:t)
(2.19)

+ 〈log (p(y|xt))〉q(xt)
, (2.20)

where A and B are given by

At−1 = Kxt−1,zK
−1
z (2.21)

Bt−1 = Kxt−1,xt−1 −Kxt−1,zK
−1
z Kz,xt−1 , (2.22)

and Kxt,z is the Gram matrix (Kx,z)i,j = k(xi, zj). Referring to equation

2.2, we can interpret the term At−1µ as the mean prediction of the state

at time t, extrapolating from the state at time t − 1, conditioning on the

inducing inputs z. We can also see that the predictive covariance at time t

is given by the expression Bt−1.

12

So if we wish to carry out a variational approximation to a GP-SSM model

such as the one described in this chapter, we know the optimal distribution

for q(v), but we are left with an open question as to what distribution to

use for q(x). Luckily, we are able to find an explicit optimal form of this

distribution. We find that the optimal distribution is

q∗(x) ∝ p(x0)
T∏
t=1

p(yt|xt) exp

(
−1

2
tr(Q−1(Bt−1 +At−1ΣA

T
t−1))

)
N (xT |At−1µ,Q).

(2.23)

This is a somewhat simpler functional dependence, which can actually be

interpreted as a state space model itself. However, in this case the model

factorises in a Markovian fashion: the probability of a state xt depends

only on the previous state xt−1. The state transition function is clearly not

Gaussian, as it has a complicated dependence on the Bt−1 and At−1 terms

(which are nonlinear, but Markovian as the only latent state they depend

on is xt−1). In Frigola 2015, evaluating the posterior through this nonlinear

transformation was achieved with Monte-Carlo Markov chain methods. In

the present work, we deliberately choose to use a non-optimal functional

form for q(x). However, our choice of q(x) to be Gaussian does allow us

to sidestep any use of approximate sampling methods and let us study the

maximum likelihood model analytically.

2.8 Autoregressive Models

Predictions on dynamical systems can be made using autogressive (AR) mod-

els. An nth order linear AR model, denoted AR(n), is given by the equation

predicting an observation at time t,

Xt =
N∑
i=1

aiXt−i + Z, (2.24)

13

Where Z is a random variable, Z ∼ N (0, 1). We might expect such a model

to perform very badly, as it doesn’t take into account a latent process at all,

and there isn’t any distinction between observation and process noise. This

latter point is particularly troubling, as a small amount of noise into the

inputs of a function can result in very wrong outputs, as extensively studied

in McHutchon 2014. Despite these downsides, AR models are widely used,

and are reasonably successful.

More recent work has introduced nonlinear AR models, such as the GP-

FNARX setup. In this framework, we drop the linearity condition, and sim-

ply predict the nth observation as a function of the preceding observations,

using a Gaussian process to model our function.

Using a Gaussian process to represent our function also allows us to propagate

uncertainty through our predictions analytically. We would certainly expect

that our predictions will become less accurate the further forward in time we

look, so having a directly estimation of the uncertainty associated with each

prediction is very useful. A Gaussian process over the autoregressive model

gives us a very natural approach to this, with the prediction given by

yt = f(yt−1, . . . ,yt−N ,ut−1, . . . ,ut−N). (2.25)

Figure 2.3: A graphical model for the conditional dependencies in the 3rd
order Gaussian Process Autoregressive Model, in training.

. . . f t

yt−1

f t+1

yt

ut ut+1 ut+2

f t+2

yt+1 yt+2

. . .

14

Chapter 3

Related Work

As described by Roweis and Ghahramani 2000, the idea of using the under-

lying probabilistic structure of a dynamical system to interpret observations

has a long history. The first widely-used application of the dynamical system

framework was the Kalman filter, introduced in Kalman 1960, which corre-

sponds to a state-space model with a linear transition function and Gaussian

likelihood. These restrictions on the form of the dynamics allow the Kalman

filter’s equations to be solved cheaply and exactly: key reasons why it is

used widely to aggregate sensor readings in fields as disparate as aircraft

autopilots, econometrics, and signal processing.

Dropping the linear assumption increases the complexity of the problem to

a huge degree. The extended Kalman filter tries to handle nonlinear systems

by linearising the system around the current point in state space. Although

this ad-hoc extension of the Kalman filter does tend to work well with cer-

tain nonlinearities, this depends to a large extent on knowing the accurate

dynamics of the system, as Jacobians are required to calculate the required

linearisation. See Ljung 1979 for more details. More recent work on the

unscented Kalman filter, introduced in Wan and Van Der Merwe 2000 have

achieved remarkably large gains in accuracy for the same computational com-

plexity.

15

In the related field of system identification, the early work relied on assump-

tions of a certain parametric models, the parameters of which were then

inferred from recorded data. More recent work has attempted to relax the

restrictions on specific parametric forms by introducing nonparametric meth-

ods such as neural networks or Gaussian processes. The recent focus on deep

learning arises from its remarkable ability to learn some underlying lower-

dimensional set of latent variables describing e.g. image classes in a high-

dimensional space of pixel intensities (see Goodfellow, Bengio, and Courville

2016) for more detail. Similarly, by not relying on a parametric form for the

transition function in a dynamical system and fitting a Gaussian Process for

the proposed transition function, the GP autoregressive model described in

section 2.8 can give very good results. Since we assume our inputs will be

corrupted by some observation noise, we can do even better by smoothing

the data before we feed it into our regression. Although this approach does

not attempt to understand the structure of the dynamical system, in practice

it serves very well.

Another approach to controlling systems, Reinforcement Learning, again

sidesteps the problem of learning an accurate model of the dynamics of a

complex system and instead attempts to learn an accurate approximation to

the value function, which maps actions onto the expected rewards obtained

by taking that action. Extremely impressive results have been obtained by

deep reinforcement learning algorithms on diverse problems such as Go or

Atari games (see Silver et al. 2016). However the representation of the en-

vironment that deep learning systems create is very opaque to interpret, be-

ing nonparametrically described by thousands or millions of neuron weights.

Furthermore, RL systems are data-inefficient, requiring very many training

periods to perform well.

In recent years Gaussian process latent variable models have started to be

widely used. The variational GP-SSM approach described in the previous

section describes the reasoning behind their use. Along with the variational

approach, many attempts have been made to simplify the GP-SSM model to

make a solution tractable. These include assuming a parametric form for the

16

GP based on R. Turner, Deisenroth, and C. E. Rasmussen 2010, and much

work involving sampling methods in Wang, Fleet, and Hertzmann 2008.

There are a wide variety of approaches to solving dynamical systems. The

approach outlined in this thesis has the advantage of being fully analytic and

not relying on sampling methods, and extends a long history of Gaussian

process methods used to comprehend dynamical systems.

17

18

Chapter 4

Design and Implementation

Building on the previous work in the area, we discuss the (previously unpub-

lished) implementation of a doubly-variational GP-SSM by C. Rasmussen

and describe how we can extend this framework to derive maximum-likelihood

predictions.

In order to allow tractability, and to remove any need for sampling methods,

several further assumptions are introduced on top of those discussed in the

previous chapter.

Squared Exponential Covariance Function We choose the covariance

function in the Gaussian Process over the transition function to be

a squared exponential kernel as described in C. E. Rasmussen and

Williams 2005. In order to eliminate any sampling, we are forced to

choose a kernel which can be analytically integrated against a Gaussian

density. This introduces one hyperparameter per latent dimension per

GP, the characteristic length scale `. As discussed in C. E. Rasmussen

and Williams 2005, the SE covariance function has been the standard

choice of covariance function for Gaussian processes for decades.

Gaussian Likelihood We assume that p(yt|xt) is Gaussian. This allows us

to solve for an optimal mapping from the latent space to the observation

space. Assuming that errors have a Gaussian form is a very common

19

assumption in physical science, and is often justified by appeal to the

central limit theorem (if the errors are generated by many interactions

of independent errors, the total observed error will be approximately

Gaussian). If the likelihood was in actual fact not Gaussian, we would

expect that our method would still be able to form a good model if we

allowed it more latent states, as it could ‘absorb’ the likelihood into

the state-space transition function.

Gaussian Latent Variable Distribution The crucial assumption made

in this implementation is that the distribution q(x) is Gaussian. Equa-

tion 2.23 shows that the optimal q(x) has a Markovian structure, but

is complicated by non-Gaussian terms involving A and B, which are

ignored. Although we can prove that our choice of q(x) is non-optimal,

we hope that the increase in speed from the fully analytic treatment

of the optimisation allows for better overall performance than a more

optimal choice for q(x).

While the first two assumptions may be the best assumptions in certain cases,

such as if we know our transition function is infinitely differentiable with

Gaussian noise, the final assumption is a deliberate choice for a suboptimal

distribution, in a trade-off in order to achieve an analytic solution.

When evaluating a model that tries to learn the dynamics of a system, the

most obvious approach is to ask the model to predict a new sequence and

measure the accuracy of this generated sequence. However, we need to spec-

ify some sort of initial conditions for the generated sequence so that we can

compare to a specific real sequence. The natural way to provide these initial

conditions is to truncate a generated sequence, showing the first few obser-

vations to the model, then evaluating its predictions against the remaining

observations. This means we have to develop the algorithm for three cases:

Training Given some valid training observations and control inputs, jointly

find the nonlinear transition functions and underlying latent states cor-

responding to the maximum likelihood system.

Inference on a test seed set Given some observations, control inputs, and

20

a trained model, find the latent states corresponding to the observa-

tions, while fixing the transition function and underlying mapping from

latent states to observations.

Prediction Given a set of latent states corresponding to the output of the

previous case, and control inputs, output future predictions.

The first case is the focus of an unpublished note (C. Rasmussen 2016).

In this project we developed the second and third cases. In practice, the

output in the first two cases was the negative log marginal likelihood and

derivatives, allowing a range of different algorithms to be used to solve the

gradient descent problem to find the optimal set of parameters.

4.1 Implementation

Table 4.1: Showing the key variables in the implementation.

Variable Meaning
E Dimensionality of the latent space
U Dimensionality of the control inputs
M Number of inducing inputs
N Number of timeseries
T(n) Length of the timeseries

Since we wish to train our model by gradient descent, we must calculate

the lower bound on the log likelihood, and provide derivatives. The lower

bound follows from equation 2.17, where we additionally explicitly compute

the expectations over q(x). We introduce the following notation for the

distributions q(x),

p

(
xt

xt+1

)
∼ N

((
µt

µt+1

)
,

(
Σt,t Σt,t+1

Σ>t,t+1 Σt+1,t+1

))
. (4.1)

Which identifies the joint probability of a particular value of the underlying

state at t and t + 1 as a Gaussian with a block-matrix form for the covari-

21

ance matrix. Due to the marginalisation property of a Gaussian, we can

quickly identify the marginal distribution p(xt) = N (µt,Σt,t), and similarly

for p(xt+1). For an illustration of how these distributions look in the simpler

case when the Σ matrices are scalars, see figure 5.1.1.

The ELBO arises from several sets of terms, which can be classified into tran-

sition function terms, which govern the interaction of the latent space points

with the underlying Gaussian process transition function; entropy terms

which penalise overly uncertain q(x) distributions; and likelihood terms which

penalise latent space points which correspond to observations differing from

those actually observed.

The transition function and likelihood terms are different in the testing case,

as we are using a fixed transition function and latent space mapping deter-

mined in prior training, instead of calculating this based on the latent points.

This means that the expression obtained for the ELBO is quite different in

the training and testing case.

4.1.1 Transition Function Terms

The functions Ψ1,2 completely describe the interaction of the latent space

points with the inferred transition function f . Ψ is defined in equation 2.16.

We run into Ψ in two ways, as it is used in parameterising the optimal q(v)

Gaussian distribution, but it also appears when computing the expectations

in equation 2.17. In the training case this leads to considerable simplification,

but in the testing (latent state inference) case we define Ψ∗ as the expectation

over test data, leaving Ψ to stand for the expectations over (fixed) training

data.

In the training case, we find that the expectations over q(x) can be expressed

22

through the terms Ψ1e,Ψ2e,Ke as

1
2

E∑
e=1

log |(Ke + Ψ2e)
−1Ke|+ trK−1e Ψ2e + +Ψ>1e(Ke + Ψ2e)

−1Ψ1e

−1
2
trQ−1

T∑
t=2

(I + µ>t µt + Σt,t)− T−1
2

log |Q| − (T−1)E
2

log (2π).

(4.2)

In the testing case, the relevant terms are

1
2

E∑
e=1

trK−1e Ψ2e(Ke + Ψ2e)
−1Ψ∗2e − tr(Ke + Ψ2e)

−1Ψ1eΨ
>
1e(Ke + Ψ2e)

−1Ψ∗2e

+ Ψ>1e(Ke + Ψ2e)
−1Ψ∗1e − 1

2
trQ−1

T∑
t=2

(I + µ>t µt + Σt,t)

− T−1
2

log |Q| − (T−1)E
2

log (2π).

(4.3)

We also need to provide the relevant derivatives - with respect to Ψ in the

training case, and with respect to Ψ∗ while Ψ is held constant in the testing

case. These are found by repeated application of the chain rule.

Explicit Calculation

Explicitly calculating Ψ involves computing the expectation of K over q(x)

described in eq. 2.16. We need to fully detail this computation, as it will be

used in finding the optimal forward prediction in the test case.

To compute these expectations, we multiply the joint q(xt,xt−1) by the co-

variance function, which is written as a joint Gaussian itself,

ke(xt−1, zie) = exp
(
− 1

2

[xt−1 − zie

xt

]>[Λ−1e 0

0 0

][xt−1 − zie

xt

])
,

23

so that

QΨ1,i,e =

∫
xtke(xt−1, zie)q(xt−1:t)dxt−1dxt =

(
µt + Σt,t−1[Λe + Σt−1,t−1]

−1(zie − µt−1)
)

× |I + Λ−1e Σt−1,t−1|−1/2 exp
(
− 1

2
(µt−1 − zie)[Λe + Σt−1,t−1]

−1(µt−1 − zie)
)
.

(4.4)

QΨ2,i,j =

∫
ke(zie,xt−1)ke(xt−1, zje)q(xt−1)dxt−1 = exp(−(zie − zje)Λ

−1
e (zie − zje)/4)

× |I + 2Λ−1e Σt−1,t−1|−1/2 exp(−(
zie+zje

2
− µt−1)[Λe/2 + Σt−1,t−1]

−1(
zie+zje

2
− µt−1)/2).

(4.5)

4.1.2 Entropy

The entropy of the Gaussian q(x) distributions is simply given by

H(q(x)) = TE
2

(1 + log (2π)) + 1
2

T∑
t=2

log

∣∣∣∣∣
(

Σt,t Σt,t+1

Σ>t,t+1 Σt+1,t+1

)∣∣∣∣∣− 1
2

T−1∑
t=2

log |Σt|,

(4.6)

and is the same in the training and testing case.

4.1.3 Likelihood

The terms relating to the likelihood are slightly more complex, as they tie

the model to observations.

The latent states map to the observed values through a linear mapping, so

that

p(yt|xt) = N (Cxt + C ′, R). (4.7)

When computing the expectation over q(xt), which itself has a Gaussian dis-

tribution, the xt marginal covariance Σt is transformed through the mapping

24

to give

T∑
t=1

〈log p(yt|xt)〉q(xt) = − DT
2

log(2π)− T
2

log |R|

−1
2
trR−1

T∑
t=1

(
(yt − Cµt)(yt − Cµt)> + CΣtC

>).
(4.8)

It is possible to find the mapping R∗ and C∗ that maximises the likelihood:

R∗ = 1
T

[T∑
t=1

yty
>
t −C∗

T∑
t=1

µty
>
]
, and C∗ =

T∑
t=1

ytµ
>
t

[T∑
t=1

µtµ
>
t +Σt,t

]−1
.

(4.9)

In the training case, we wish to vary the q(x) distribution in order to find

the most likely latent states, which causes a corresponding change in the

maximum likelihood values of the parameters R∗, C∗. In the training case,

we can substitute these back to equation 4.9, giving a simplified likelihood,

L∗ = −DT
2

(1 + log (2π))− T
2

log |R∗|. (4.10)

However, in the testing case we use the latent space mapping that was op-

timised in the training case: we don’t want to change our model when it’s

looking at testing data. Hence we don’t get a simplified form of the likeli-

hood, and must calculate it in full from equation 4.8. In both the training

and test cases, we find that the derivatives are

L∗

∂µt
= C>R−1(yt−Cµt)

∣∣∣∣∣
R=R∗,C=C∗,

and
L∗

∂Σt,t

= −1
2
C>R−1C

∣∣∣∣∣
R=R∗,C=C∗,

(4.11)

4.1.4 Complexity

The number of variables to be optimised by the minimiser is E2(M + 2TN +

1) +E(TN +MU + U + 1). This limits our choice of optimisation routine -

25

Algorithm 1: Overview of the variational Gaussian process state-space
model algorithm. In the training and testing cases, a gradient descent al-
gorithm needs to be used to find the optimal setting of all the parameters.

Input :
• In the training case:

– A set of inducing inputs
– Parameters describing the mean, µt and marginal and pairwise

covariances Σt,t, Σt,t−1 for each latent time point.
– A set of observed data and control inputs

• In the testing (inference) case:
– A (fixed) set of inducing inputs
– Parameters describing the mean, µt and marginal and pairwise

covariances Σt,t, Σt,t−1 for each latent time point.
– A set of observed data and control inputs

• In the testing (prediction) case:
– Parameters describing the mean, µt and marginal and pairwise

covariances Σt,t, Σt,t−1 for each latent time point, corresponding
to an optimised latent state

– A set of control inputs
Output:
• In the training case:

– The negative log marginal likelihood L and derivatives with
respect to inducing inputs, hyperparameters, and latent states.

• In the testing (inference) case:
– The negative log marginal likelihood L and derivatives with

respect to latent states.
• In the testing (prediction) case:

– Predictions for the time points after the end of the optimised
timeseries, and the joint covariance matrix of these predictions.

function Variational Gaussian Process State Space Model
if Predicting then

Predict observations using analytic expression
else

if Testing (inference) then
Using fixed Ψ, K C, R,
Calculate L and derivatives with respect to latent state parameters.

else
Update Ψ, K, C, R
Calculate L and derivatives with respect to latent state parameters,
hyperparameters and inducing input locations.

26

using a full BFGS solver requires O(V 2) memory to store the Hessian for V

variables, which quickly becomes too much to fit in RAM. However, methods

such as conjugate gradients can scale to over 100,000 variables, so this is not

an insurmountable problem.

The algorithm itself takes O(E2TNM2) time in calculating the Ψ deriva-

tives, which is the most itensive part of the algorithm. Although this rules

out training models with exceptionally large E, we are able to comfortably

train a model with 7 latent states, 50 inducing inputs and several hundred

observations on a mid-range laptop. Further optimisation, particularly inves-

tigating stochastic gradient descent, may be able to give significant speedup.

4.2 Analytic Prediction

In the testing case, we have a seed timeseries for which we have inferred the

latent states. We then wish to compute a predicted future trajectory of the

system. It turns out that we can do this entirely analytically.

Predicting one point into the future is equivalent to increasing the length of

the test timeseries by one, and trying to find the parameters µ∗T , Σ∗T,T and

Σ∗T−1,T which maximise the likelihood. Due to the Markovian factorisation

property of q(x), the parameters must only depend on the previous time-

point’s mean µT and marginal covariance ΣT−1,T−1.

Since almost all of the NLML terms do not depend on µT , we have that

∂L
∂µt

=
E∑
e=1

Ψ>1e (Ke + Ψ∗2e)
−1 ∂Ψ∗1e

∂µt
− tr(Q−1)µt, (4.12)

and substituting in the explicit form for Ψ∗1e, we find that

µ∗T,e =Ψ>1e (Ke + Ψ2e)
−1 |I + Λ−1e ΣT−1,T−1|−1/2×

exp

(
−1

2
(µT−1 − zie)[Λe + ΣT−1,T−1]

−1(µT−1 − zie)

)
,

(4.13)

27

which corresponds to the mean prediction of the GP, conditioned on the

inducing inputs. For the marginal ΣT,T , we find that

∂L
∂ΣT,T

= −1

2
trQ−1 +

1

2

∂

∂ΣT,T

| log ΣT−1:T,T−1:T |. (4.14)

Setting the derivative to zero gives us

Σ∗T,T = Q+ Σ∗>T−1,TΣ−1T−1,T−1Σ
∗
T−1,T (4.15)

For the pair-wise marginal,

∂L
∂ΣT−1,T

=
E∑
e=1

Ψ>1e (Ke + Ψ2e)
−1 ∂Ψ∗1e
∂ΣT−1,T

+
1

2

∂

∂ΣT−1,T
| log ΣT−1:T,T−1:T |.

(4.16)

This gives us

0 =
E∑
e=1

Ψ>1e (Ke + Ψ2e)
−1 ∂Ψ∗1e
∂ΣT−1,T

−Σ−1T−1,T−1Σ
∗
T−1,T

(
Σ∗T,T − Σ∗>T−1,TΣ−1T−1,T−1Σ

∗
T−1,T

)−1
.

(4.17)

Substituting, we find that

Σ∗T−1,T =ΣT−1,T−1

E∑
e=1

Ψ>1e (Ke + Ψ2e)
−1 (Λe + ΣT−1,T−1)

−1 (z − µT−1)

× |I + Λ−1e ΣT−1,T−1|−1/2 exp
(
− 1

2
(µT−1 − zie)[Λe + ΣT−1,T−1]

−1(µT−1 − zie)
)
,

(4.18)

which we can then substitute in to equation 4.15 to find Σ∗T,T .

We can motivate our choice of Σ∗T,T by considering the prediction of the value

of xT conditional on the value of xT−1. By equation 2.2 we have a conditional

distribution q(xT |xT−1) = N (µ′,Σ′), with Σ′ = Σ∗T,T−Σ>∗T−1,TΣ−1T−1,T−1Σ
∗
T−1,T−1 =

Q. We can clearly see how the derived Σ∗T,T is exactly the variance for which

the extra uncertainty added to the prediction of the next state is Q.

The intuition for equation 4.18 is that we are directly calculating the covari-

28

ance E((zi − µT−1)(zj − µT)) = E(zi(zj − µT−1)), from the inducing points

z. We rescale the individual contributions by (Λe + ΣT−1,T−1)
−1, and then

scale up by a factor of ΣT−1,T−1 after collecting the contributions from all z.

4.2.1 Predicting

4.3 Datasets

We worked on several different datasets, spanning a range of applications,

number of latent dimensions, and noise regimes. The success of the imple-

mentation in a large number of different settings shows that the method is

broadly applicable in many different situations, due to its weak assumptions

(that the underlying process is a dynamical system), and its robustness to

noise. We hope that if the process has too much noise, and it isn’t possi-

ble to pin down the dynamics of the system, then the model will return an

inunformative probability distribution. However, if the underlying process

cannot be described as a dynamical process, then it the model may return

nonsensical results.

4.3.1 1D Example

In order to explain the model in action, an introductory toy model of a

nonlinear system will be used. This has a latent dimensionality of 1, and a

transition function

f(x) =
4

5
+

(
x+

1

5

)(
1− 5

1 + exp (−2x)

)
, (4.19)

chosen so that as x goes to +∞, the function is a straight line with slope

−4, while as x goes to −∞ the function is a straight line with slope 1. In

the generative process we can add a certain amount of Gaussian noise, and

29

we can add a certain amount of observation noise. A plot of the transition

function is shown in figure 4.3.1.

A plot of three simulated timeseries is shown in figure 4.3.1. The plot shows

the clear difference between process and observation noise. The 1D case is

complex enough to expose the real necessity of using a principled model that

takes into account the difference between the two types of noise.

−2 −1.5 −1 −0.5 0.5

−1

−0.5

0

0.5

xt−1

xt

Figure 4.1: Showing the transition function used in the 1D case. Gaussian
noise was added to the transition function so that the process was partially
schochastic

4.3.2 Cart Pole

The cart-pole system is a very common benchmark in Reinforcement Learn-

ing (RL). It consists of a box that runs on a 1D track, which is attached to

a pendulum that is allowed to swing freely. The state can be represented

with four parameters: θ, the angle of the pendulum (measured downwards)

and rate of change θ̇, along with the position of the cart x and the velocity

ẋ. The transition function is extremely complicated, and so this is a good

benchmark to try to learn the dynamics.

In order to make the learning process slightly easier, the angle is not repre-

sented directly with θ, as the fact that we measure the angle from 0 to 2π

introduces an artificial nonlinearity in the dynamics when moving past the

angular origin. Instead we expand the state space by working with the sin

30

0 1 2 3 4 5 6 7 8 9
-6

-5

-4

-3

-2

-1

0

1

2

Noise-Free

Observation Noise

Process Noise

Figure 4.2: Some simulated trajectories in the 1D case. The three trajectories
have the same initial condition, and have added process or observation noise,
which are both Gaussian with mean zero and standard deviation one-half.
The two noises have very different effects, with process noise pushing the
timeseries onto completely different trajectories while the observation noise
simply obscures the real state. We clearly need our models to distinguish the
two noises

and cosine of the angle instead of the angle directly. The input space to the

model consists of horizontal impulses applied to the cart, which results in

a model with a 5D state space for the latent state, augmented with a 1D

state for the inputs. However, in order to give an accurate description of

the state, we need to equip the model not only with the current input, but

also the previous force. This is because in the generative model, the forces

are applied in a finite time which overlaps with the timesteps, such that the

previous force is still being applied during the next timestep. So overall, we

have a 7D problem, counting 5 dimensions from the latent space, and two

from the inputs.

The complexity of this example does mean that we are unable to analytically

confirm that the model has identified the correct dynamics, as we are able to

do in the 1D case. However, we are able to compare predictions of the model

to the results we obtain.

31

4.3.3 Bouc-Wen

The Bouc-Wen model is a commonly-used framework to examine many of

the key features of systems exhibiting hysteresis. A Bouc-Wen oscillator in

one dimension has an equation of motion

mLÿ + r(y, ẏ) + z(ẏ) = u(t), (4.20)

where

r = kLy + cLẏ. (4.21)

If the z term is neglected, the Bouc-Wen system is a straightforward damped

oscillator. Adding in the z term results in a wide range of rich phenomena.

Although z is not directly observable, it obeys a differential equation

ż = αẏ − β
(
γ|ẏ||z|ν−1z + δẏ|z|ν

)
. (4.22)

Including z quickly turns a simple physical system into a challenging non-

linear identification task. At the 2016 workshop on nonlinear system identi-

fication benchmarks (see Noel and Schoukens 2016), the Bouc-Wen system

was chosen as a new model system to test upcoming methods against. We

used the dataset prepared there. Of particular importance was the addition

of a small amount of noise to the results: Gaussian noise with magnitude

8× 10−4 mm. Since the typical amplitude of the system was around 1 mm,

this may not seem like a very large amount of noise. However, since we wish

to infer several hidden states (the ẏ, z and ż states), this could be a problem.

Furthermore, the characteristic frequency of the system was 36 Hz, and so we

need a sampling frequency faster than this to capture any accurate picture

of the dynamics. A frequency of 750 Hz was recommended to capture the

nonlinear dynamics of the system. However, a very rapid sampling frequency

introduces a new problem - if y doesn’t change very much over one time step,

then the majority of the observed change in the position will actually be due

to noise. The model will need to learn the necessity of smoothing over the

32

previous few position readings to get an accurate measure in the change in

position.

In fact, we found that z varied too rapidly at a sampling frequency of 750

Hz to be picked up, so a sampling frequency of 4,000 Hz was used. At this

level, the typical change in the position variable was around 5×10−3 mm,

which was only around seven times the noise level. We were stuck in a tricky

balancing act of choosing a sampling rate that was fast enough to gain some

idea of the dynamics whilst not so fast it was overwhelmed by noise.

33

34

Chapter 5

Implementation and Evaluation

5.1 Learning

5.1.1 1D Toy Model

Many of the challenges and achievements studied in the more complicated

datasets are also present in the 1D case. The 1D case is significantly easier to

study, both because of the reduced computational complexity, and because

it is possible to visualise the transition function in a 2-dimensional plot.

Before training the model, it’s necessary to choose an initialisation. Since the

model relies on a gradient-descent optimisation of thousands of parameters,

an exhaustive search of this space is obviously impossible. Therefore the

model is likely to be much more likely to find a good solution if initialised

with a good first guess. The initialisations lie in three different areas:

Inducing Inputs Chosen to be randomly-distributed points, v ∼ N (0, I).

Distribution of x The means were chosen to be equal to the observed data,

and the variances were chosen to be isotropic Gaussians,

q(xt,xt+1) = N

(
(yt,yt+1),

(
αI 0

0 αI

))
.

35

In practice, the optimisation did not seem very sensitive to the value

of α.

Hyperparameters We chose the initial length-scales as 0, and the initial

process noise to be 0, corresponding to unit length scale and noise level.

The length-scales corresponding to the deterministic inputs were set to

the log standard deviation of the inputs.

These choices for the initialisations generally scale to higher dimensions, al-

though the initialisation of q(x) is not so straightforward when there are

more latent states than observed states. In that case, we have to consider if

we wish to engineer some initialisations, or try to get the model to learn the

latent states from scratch.

Figures 5.1.1 and 5.1.1 shows some plots of models that have been trained

on the 1D system, showing the transition function, as well as the q(x) dis-

tributions and the inferred states for a section of the timeseries. We can see

that the model learns the correct dynamics of the system, even under quite

challenging noise conditions.

After learning the dynamics, we are able to make principled forwards predic-

tions, using the method described in section 4.2.

After a model was trained, it was used to make predictions on a previously-

unseen test sequence. Five initial observations from the test sequence were

shown, and these were used to infer the latent state. The final latent state

was used to make a prediction, which was used as an input to the next

prediction. Figure 5.1.1 shows a prediction in the low-noise regime, inluding

displaying the q(x) distribution. This shows one of the limitations of our

variational assumption for the form of q(x), as the most uncertain points are

forced by their Gaussian shape to spread probability density over areas of

the joint space that are not near the transition function at all. In the limit

of predictions with high amounts of observation noise, we would expect that

the shape of the joint probability distribution would become spread over the

whole extent of the transition function. However, the Gaussian nature of the

distributions means the joint distribution cannot curve to follow the region

36

-5 -4 -3 -2 -1 0 1 2 3

xt

-12

-10

-8

-6

-4

-2

0

2

f
(x

t)
,x

t+
1

Function 95% Confidence Interval

Function Mean

Ground Truth Function Value

q(x) 95% Confidence Region

q(x) Mean

Corresponding Observation

30 32 34 36 38 40 42 44 46 48 50

t

-3

-2

-1

0

1

x
t

Prediction 95% Confidence Interval

Mean Prediction

Observation

Actual state

Figure 5.1: A trained model in the almost complete absence of noise (|Q| ∼
10−4, R ∼ 10−4). Trained with 50 data points and 20 inducing inputs, the
model learns the correct shape of the transition function. The upper panel
shows the resulting Gaussian process over the transition function, as well as
a few of the individual q(xt,xt+1) joint distributions. The lower panel shows
the observed timeseries.

near the nonlinear transition function. Underestimating the uncertainty in its

own predictions is a common hallmark of variational approaches to Bayesian

learning (see R. E. Turner and Sahani 2011), and it seems like this model is

no different.

We expect the advantage of the GP-SSM compared to the AR method to be

the ability to distinguish between process noise and observation noise. This

allows the GP-SSM to get a much more accurate inference on the initial state

of the system, and so make more accurate predictions forward into the future.

Given this, we would expect that the AR model would fare most badly in

a regime with high amounts of observation noise, and comparatively small

amounts of data. This suspicion is confirmed in table 5.1.1, summarising the

performance of the methods’ predictive capacity in various settings.

37

-5 -4 -3 -2 -1 0 1 2 3

xt

-12

-10

-8

-6

-4

-2

0

2

4

f
(x

t)
,x

t+
1

Function 95% Confidence Interval

Function Mean

Ground Truth Function Value

q(x) 95% Confidence Region

q(x) Mean

Corresponding Observation

180 182 184 186 188 190 192 194 196 198 200

t

-10

-8

-6

-4

-2

0

2

4

x
t

Prediction 95% Confidence Interval

Mean Prediction

Observation

Actual state

Figure 5.2: A trained model with high process noise and observation noise
(R = |Q| = 0.25). Here the trained states are less able to pick out the correct
states. However, the inferred states are generally closer to the actual state
than the observation. The model includes the true transition function in the
95% confidence interval of possible dynamics. We can see that the right-hand
side of the transition function is more incorrect, which we can understand by
the steeper transition function leading to more variation in the output for a
given variation in the input.

Evaluation

We evaluated the predictions with two approaches. We report the root mean

square error (RMSE) between the observations y and the predictions ŷ, which

is given by

eRMS =

√√√√ 1

Nt

Nt∑
t=1

(ŷ(t)− y(t))2. (5.1)

38

Table 5.1: Comparison of the variational GP-SSM to the order two autore-
gressive model in the 1D case, with process or observation noise. In both
cases, the given noise had a standard deviation of 0.5 and the other noise
was kept at a standard deviation of 0.01. We see that the GP-SSM is able
to do well in the presence of observation noise, and not too badly in the
presence of process noise. We report both the root mean square error and
the negative joint log probability of the observations.

Train Time Test Time RMSE (5 Ahead) NJLP (5 Ahead)

Process Noise

VGPSSM 120s 6s 2.7 0.79
GP-AR(2) 2s <1s 10.9 1.4

Observation Noise

VGPSSM 115s 5s 6.0 0.90
GP-AR(2) 2s <1s 71 2.5

-5 -4 -3 -2 -1 0 1 2 3

xt

-8

-6

-4

-2

0

2

4

f
(x

t)
,x

t+
1

Function 95% Confidence Interval
Function Mean
Ground Truth Function Value
q(x) 95% Confidence Region
q(x) Mean
Corresponding Observation

0 2 4 6 8 10 12 14 16 18 20

t

-4

-2

0

2

4

x
t

95% Confidence Interval
Mean Predicted
Observation
Actual state
Last Observation

Figure 5.3: Predictions from a low-noise regime. We can see that the un-
certainty in the predicted states increases as the points go into the future.
Also evident is the inaccuracy made by the assumption of Gaussian errors:
the distributions are forced to spread their uncertainty over areas which are
far from the transition function, and so extremely unlikely for the state to
ever reach those regions of the state space. However, the model does have a
consistent handle on its own uncertainty, with e.g. its uncertainty decreasing
dramatically at time points 7 and 11. We can see this is because the previous
states are at points where the transition function is flat, so any states in the
same region will map map to the same points, reducing the error.

39

We also report the negative log joint probability of the observed data yTN :T

given the seed data in the initial timeseries y1:TN
.

− ln (p(yT ,yT−1,yT−2, . . . |y1,y2, . . .)). (5.2)

In the case of our GP-SSM, we have to do some work to compute this, noting

that we can factorise the joint probability due due to our assumption of the

Markovian structure:

−ln (p(yT ,yT−1,yT−2, . . . |y1,y2, . . .)) = ln p(y0)+ln p(y1|y0)+ln p(y2|y1)+. . . .

(5.3)

Finally, we need to relate the probability of finding a point in the latent space

to the observation space. We have that(
xt

xt+1

)
∼ N

((
µt

µt+1

)
,

(
Σt,t Σt,t+1

Σ>t,t+1 Σt+1,t+1

))
. (5.4)

The linear mapping to the observation space results in q(yt) = N (Cµt +

C ′, CΣtC
> + R). So the action of the mapping in the joint space results in

a joint probability density

(
yt

yt+1

)
= N

((
Cµt + C ′

Cµt+1 + C ′

)
,

(
CΣt,tC

> +R CΣt,t+1C
>

CΣ>t,t+1C
> CΣt+1,t+1C

> +R

))
.

(5.5)

We can then use equation 2.2 to get a factorisation of the joint probability

density. When using the AR(2) model, we can factorise the joint probability

density too, but we don’t have to worry about the mapping from a latent

space to the observation space, as the predictions are made directly in the

observation space.

Note that we want our negative log joint probability to be as large negative

as possible, corresponding to a model which is certain of the correct answer.

A final point to consider is that the joint log probability gives a joint proba-

40

bility over all dimensions of the output, while we report the RMSE over each

dimension separately. While this seems the most principled method to gaug-

ing how accurately the model’s uncertainty relates to the actual error, it is

not particularly easy to visualise the probability density over E-dimensional

Gaussian distributions, hence the use of RMSE in addition.

The question of when to stop is an interesting point to consider. If we’re

attempting to predict an entire timeseries ahead, then if there is any process

noise at all (which we assumed in this model), then at some point it simply

won’t be possible to predict ahead, as the noise compounds over time. So

we should report the RMSE and joint error as we increase the number of

points predicted forwards, as otherwise the total error will be dominated by

the completely ignorant final few predictions.

5.1.2 Inference of Hidden States

One of the attractive features of the GP-SSM model is the possibility of

inferring hidden states. The 1D system provides a very simple setting to

expose some of the challenges that are likely to pose problems when extending

this work to higher dimensionalities.

The lack of initialisation is an obvious problem when trying to infer the

existence of unseen states. Although we may often have hints as to how we

should initialise our hidden states, we would prefer to be able to not have

to tweak initialisations in order to infer the correct underlying dynamics.

Unfortunately in practice, without the ‘hints’ provided by the initialisation,

the minimizer was not able to discern the dynamics of the system, and found

itself in a local minimum with high process noise and observation noise. By

applying a ‘barrier function’ (see Bartholomew-Biggs 2005 for more detail),

roughly equivalent to assuming a strong prior over the magnitudes, we can

not allow the model to consider the case where the process noise is too large.

The results of limiting the process noise in this way are shown in table 5.2.

We can see that the model correctly identifies the most likely configuration

to be one with a single hidden state.

41

Table 5.2: Showing the effect of imposing a restriction on the process noise
when optimising the negative log marginal likelihood (NLML). Here we use
100 data points, moderate noise with |Q| = |R| = 10−2, and 30 inducing
inputs. Examining the length-scales in the third case shows that the model
has shut down one of the dimensions, with the C matrix dominated by the
element mapping the active dimension to the likelihood.

E Process Noise NLML Test − ln p(y5:10)

1 Unconstrained 168 16.1
1 Constrained -202 -11.8
2 Constrained -197 0.6

5.2 Cart Pole

A model was trained on the cart-pole system described in section 4.3.2. As

in the 1D case, we show the trained model and compare the predictions to

an autoregressive model. Initialisations were exactly as in the 1D case, with

normalised observations for the latent points. The model is able to make

good predictions, as can be seen in figure 5.2. The RMSE shows that the

mean predictions are pretty similar compared to the AR model, and perhaps

very slighly better than the AR model for the initial time points. However,

the joint probability shows that the predictions are much more certain for

the GP-SSM for the initial timesteps and then become inaccurate. This

fits with what we would expect: the model structure allows the GP-SSM

to work out which latent states are there, giving better predictions in the

initial time steps, whilst the variational assumptions give the characteristic

underestimation of uncertainty leading to overconfident erroneous elections

after around 10 forward predictions.

5.2.1 Reduced Cart Pole

We can also consider the situation where we hide some of the variables, and

see if the model is able to learn these hidden states. In particular, we will

look at the situation where we hide the velocity and angular velocity, leaving

42

-2

-1

0

1

2

x

Prediction 95% Confidence Interval

Prediction Mean

Actual State

Last Prediction

AR(2) Prediction and 95% Confidence Interval

-1

0

1

s
in
θ

-1

0

1

c
o
s
θ

-5

0

5

ẋ

0 5 10 15 20 25 30 35 40 45 50

t

-10

0

10

20

θ̇

Figure 5.4: Predictions from the variational GP-SSM and an order-2 AR
model. We see that both models are able to accurately capture the dynamics
of the system, able to predict several points forward into the future. We
also see that both methods are able to give a fairly consistent estimation of
the error in their estimates. Figure 5.2 gives a quantitative account of the
accuracy of both predictions

43

0

0.1

0.2
x

RMSE - GPSSM

RMSE - AR(2)

0

0.2

0.4

s
in
θ

0

0.2

0.4

0.6

c
o
s
θ

0

0.2

0.4

0.6

ẋ

0 5 10 15 20 25

t

0

2

4

6

θ̇

Figure 5.5: RMSE for predictions t − 5 steps ahead on the 5d cart-pole
dataset, averaged over forwards predictions from each time point in 10 test
sequences. The two RMSEs are very similar - as we would perhaps expect
as the AR model is in some sense the GP-SSM without latent variables.

the position, and sin and cosine of the pendulum angle.

Models with varying numbers of latent states were used, with each hidden

state initialised to the difference between observed states and previously ob-

served states: with the aim to get the model to recognise these ‘velocity’

terms. Results can be seen in table 5.3.

Table 5.3: Models with differing numbers of latent states on the 5-
dimensional cart-pole dataset, and the optimised NLML found. We find
that the model identifes three hidden states, presumably corresponding to
the velocities of the three observed states.

Latent Dimension Train L
3 -300
4 -700
5 -1700
6 -1900
7 -1750

We had a particular focus on a model with six latent states, with the first

three states initialised to the normalized observations, and the remaining

44

0 2 4 6 8 10 12 14 16 18 20

t

-400

-200

0

200

400

600

800

N
eg
a
ti
v
e
J
o
in
t
L
o
g
P
ro
b
a
b
il
it
y

Variational GP-SSM

AR(2)

Figure 5.6: Predictive power of the two competing methods on the 5D cart-
pole set. Here we see that the GP-SSM is able to make better predictions for
the first few time points, but that it quickly reverses track and makes bad
predictions, whilst the AR model makes fairly noncommittal predictions for
all future predictions. Shown are the joint log probability t steps ahead on
the 3d cart-pole dataset, averaged over forwards predictions from each time
point in 10 test sequences.

45

three states initialised to the normalized difference between the observations

and previous observations. After much optimisation, the model trained to

deliver a model that used all six Gaussian Processes. We would like to be

able to analyse what the model is inferring from the data, which we can do

in an approximate fashion by looking at the length-scales for each Gaussian

process. The model can ‘shut down’ an input to one of the GPs by increasing

the length-scale in that dimension of the state space. We can see a plot of a

badly optimised model that hit a local optimum with a completely inactive

GP in figure 5.2.1.

By looking at which GPs’ length scales are small, we can see the logical

structure of the model the GP-SSM has constructed. The logical structure

of the derived model is given in figure 5.2.1.

Since some of the functions depend only one two inputs, we can plot these

functions in a 3D figure. Some of those are shown in figure 5.2.1 The model

seems to have essentially decoupled the system into two disjoint parts, with

one GP modelling the position of the centre of mass of the cart-pole system by

integrating in the applied force. This actually allows the 6D system to make

better long-range predictions of x than the model with all five observables,

at the expense being unable to make more confident shorter-term estimates.

The remaining four GPs are left to model the dynamics of the pendulum and

any interactions with the cart. As we might anticipate, to a large degree the

model’s derived dynamics are not very easily understandable due to mixing

between the different GPs. The states 4, 5 and 6 are not coupled to the

likelihood to any degree, so they are merely acting as supporting information

for the predictions of the states 1, 2 and 3.

In any case, the model is able to give good predictions going into the future,

although it does not do any better than an AR(2) model except in the long

range prediction of the position.

46

Figure 5.7: A graphical model for the conditional dependencies in the GP-
SSM trained on the 3d cart-pole dataset, with 6 latent states. Looking at
the mapping from latent to observation space, we see that states 1,2,3 are
coupled to the corresponding observation states 1,2,3, whilst states 4,5,6 are
not coupled to the observation to any degree.

4

U1

1 2

5

3

6

5.3 Bouc-Wen

Inferring the hidden states in the Bouc-Wen model was a much more sig-

nificant challenge. In the 3D cart-pole case, it is easy to understand the

physical meaning of all of the observations. In the Bouc-Wen system, the

governing differential equation is more complicated. Furthermore, in the

Bouc-Wen case we wish to infer several unobserved states (ẏ, z, ż) from a

single observed state, y. However, some limited sucess was achieved.

Several models were fitted, with varying numbers of latent states. For the

case with one underlying dimension, the states were initialised to the observed

values of y. For increasing latent dimension, the states were initialised to

the difference in y values, with the aim to get the model to recognize this

state as the velocity; to a rough estimate of z, obtained by finding the extra

acceleration due to the z term; and to an empirical ż found by taking the

difference between the observed acceleration and the forces arising from the

non-z terms.

47

Figure 5.8: The transition functions for states 1 and 4, for the variational GP-
SSM trained on the reduced cart pole dataset. These two states essentially
function as an integrator for the force (which is the input state 7), encoding
state 1 as the position of the center of mass. The function is known with
great certainty, as the error bars (shown in faint black) are very tight around
the function.

After extensive experimentation, we found that pre-training the hyperparam-

eters while fixing the inducing inputs, then optimising the inducing inputs

separately, then finally optimising all the variables jointly could ensure that

the model did not quickly write off all the extra latent dimensions as noise.

The results in table 5.4 were obtained with different number of latent dimen-

sions. The most likely dimensionality is the dimensionality we would expect.

Referring back to the governing equation 4.22, we can see that knowledge of

both z and ẏ is needed to calculate ż, which tallies with the fact that the

GP-SSM only gets a substantial increase in understanding when four latent

states are used, and not much of an increase with one, two or three.

The structure of the dependencies in the trained model is shown in figure 5.3.

Interestingly, it does appear to be able to pick up some of the latent state,

with a state 4 that doesn’t depend on y. This is exactly as we’d expect from

equation 4.22.

However, we wouldn’t necessarily expect to see the state 3 depend on state 1,

as we should be able to obtain z by integrating up state 3, without needing

to use state 1 directly at all. However, since only one state is observed, some

48

Figure 5.9: An example of a transition function for a badly optimised model
of the reduced cart-pole. The transition function here has very high error
bars, which imply that the function merely adds noise to the latent states.
We can see how the model could shut down a GP in such a way if it wasn’t
providing any predictive power. In such a case we should note that the
‘observation noise’ in the system could be made from contributions from the
R matrix and the Q matrix in the dead GP.

49

-1

-0.5

0

0.5

1

P
o
si
ti
o
n

Prediction 95% Confidence Interval

Prediction Mean

Actual State

Last Prediction

-1

-0.5

0

0.5

1

S
in

A
n
g
le

0 5 10 15 20 25 30 35 40 45 50

t

-1

-0.5

0

0.5

1

C
o
s
A
n
g
le

Figure 5.10: Predictions from the variational GP-SSM and an order-2 AR
model. We see that both models are able to accurately capture the dynamics
of the system, able to predict several points forward into the future. We also
see that both methods are able to give a fairly consistent estimation of the
error in their estimates. The following two plots show a quantitative analysis
of the errors.

50

0

0.1

0.2

0.3

0.4

P
o
si
ti
o
n

RMSE - GPSSM

RMSE - AR(2)

0

0.1

0.2

0.3

0.4

0.5

S
in

A
n
g
le

0 5 10 15 20 25

t

0

0.1

0.2

0.3

0.4

C
o
s
A
n
g
le

Figure 5.11: RMSE for the predictions on the 3d cart-pole dataset, averaging
over forwards predictions from each time point in 10 test sequences. We see
that the GP-SSM has a clear advantage over the AR(2) in predicting the
position variable, but is comparable in the sin and cosine predicitons.

0 2 4 6 8 10 12 14 16 18 20

t

-500

0

500

1000

1500

2000

2500

N
eg
a
ti
v
e
J
o
in
t
L
o
g
P
ro
b
a
b
il
it
y

Variational GP-SSM

AR(2)

Figure 5.12: Negative joint log probability for the two predictive methods,
averaging over forwards predictions from each time point in 10 test sequences,
predicting t points into the future. We see that the GP-SSM’s predictions are
more precise and accurate at first, but that they start to become inaccurate
whilst underestimating the uncertainty in the predictions. The AR(2) model
does not make very precise predictions, but has a well-calibrated grasp of its
own certainty.

51

Table 5.4: Successive models trained on a 400-timepoint subset of the
BoucWen dataset, with varying underlying latent dimension. We are able
to clearly see the model pick out the 4-dimensional case as the most likely.
This gives us further reason to think that the GP-SSM is picking out the
dynamics.

Latent Dimension Train L
1 -2280
2 -2285
3 -2300
4 -3790

‘mixing’ of the latent states is possible, and even expected. This could be

what is occuring here.

Figure 5.13: The structure of the model found by the GP-SSM when trained
on the Bouc-Wen dataset. The only variable that is coupled to the likelihood
is state 1. Although somewhat hard to interpret, it seems as if the model is
picking up the latent z state, with the state 4 (initialised with an estimate
of ż), not depending on state 1, y, at all.

1

U

2 3

4

Unfortunately, forward predictions on this data set were not very good, with

the predictions diverging from the truth rapidly after a few timesteps for-

wards. This is shown in figure 5.3.

52

Figure 5.14: The transition function for state 4 in the Bouc-Wen dataset.
The GP-SSM picks up a nonlinear transition function, albeit with a large
amount of uncertainty.

53

0 50 100 150 200 250

t

-6

-4

-2

0

2

4

6

8

10

12

y

×10
−4

Prediction and 95% Confidence Interval

Actual State

Last Observation

Figure 5.15: Predictions from the Bouc-Wen dataset. For the ‘seed’ time-
series, 30 points were shown to the model, due to worries about the model
being able to pick up the states of the three latent variables with only a
handful of observations. Unforunately the predicitions are not very good,
with the values rapidly diverging from the observations. The model does
retain knowledge of its own uncertainty, which is very high.

54

Chapter 6

Summary and Conclusions

We have demonstrated a principled method to infer the properties of dy-

namical systems, the doubly variational Gaussian process state-space model

(GP-SSM): combining previous work on variational approaches to GP-SSMs

with a further assumption of a Gaussian latent variable distribution which

allows a fully analytic lower bound on the marginal likelihood.

Previously unpublished work on this topic is put into context, and extended

to deal with testing and prediction, which can be achieved fully analytically.

We have shown that the variational GP-SSM is able to learn the dynamics

of complicated systems such as the cart-pole, and is also able to infer un-

derlying processes, such as integrating an impulse twice to attain a position,

and finding some underlying structure in the Bouc-Wen nonlinear system

identification dataset.

In a comparision to an autoregressive (AR) model, the GP-SSM was not

much better than the AR in a 5D cartpole problem, whilst being much more

costly to train and test. However, the system fared better than the AR model

when two of the underlying variables were hidden: it was able to infer their

existence and beat the AR model in initial predictions. While both the AR

and GP-SSM model performed badly after a dozen or so predictions, the

GP-SSM also drastically underestimated its own uncertainty (as is common

55

in variational approaches to Bayesian learning). As in previous work with

VFE approximations, we find that progress is stymied by technical issues in

performing the optimisation, including the model getting stuck in local min-

ima, and sensitivity to initial conditions. However, some work with barrier

functions seems to show promise for slowing the training rate and helping

find a global minimum, even when initialisations are not specially chosen.

Future work will focus on ensuring robustness of the gradient descent opti-

misation of model parameters, hopefully developing a set of best practices of

barrier functions and training rates that work for all data sets, reducing re-

liance on intuition and ‘tricks’ in training the model. We will also clarify the

ability of the GP-SSM to learn underlying latent states, particularly look-

ing at the complexity of the model on very high-dimensional data, which we

didn’t consider at all. If the model can reduce dimensionality with the same

success as it can infer hidden states, the doubly variational GP-SSM could

succeed as a very generally applicable, interpretable and flexible learning

algorithm.

56

Bibliography

[1] Michael Bartholomew-Biggs. “Barrier Function Methods”. In: Nonlin-
ear Optimization with Financial Applications. Boston, MA: Springer
US, 2005. Chap. 19, pp. 211–218. isbn: 978-0-387-24149-4.

[2] Matthias Bauer, Mark van der Wilk, and Carl Edward Rasmussen.
“Understanding Probabilistic Sparse Gaussian Process Approximations”.
In: Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, Decem-
ber 5-10, 2016, Barcelona, Spain. 2016, pp. 1525–1533. url: http:

//papers.nips.cc/paper/6477-understanding-probabilistic-

sparse-gaussian-process-approximations.
[3] Ivar Bendixson. “Sur les courbes definies par des equations differen-

tielles”. In: Acta Mathematica 24 (1901), pp. 1–88.
[4] Christopher M. Bishop. Pattern Recognition and Machine Learning.

Springer, 2006.
[5] Laura Dietz. Directed Factor Graph Notation for Generative Models.

Tech. rep. Saarbrücken, Germany: Max Planck Institute for Informat-
ics, 2010. url: http://www.mpi-inf.mpg.de/%5C~%7B%7Ddietz/
dirfactor-notation.pdf.

[6] Roger Frigola. “Bayesian Time Series Learning with Gaussian Pro-
cesses”. PhD thesis. University of Cambridge, 2015.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[8] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Pre-
diction Problems”. In: Transactions of the ASME–Journal of Basic
Engineering 82.Series D (1960), pp. 35–45.

[9] L. Ljung. “Asymptotic behavior of the extended Kalman filter as a
parameter estimator for linear systems”. In: IEEE Transactions on
Automatic Control 24.1 (Feb. 1979), pp. 36–50. issn: 0018-9286. doi:
10.1109/TAC.1979.1101943.

57

http://papers.nips.cc/paper/6477-understanding-probabilistic-sparse-gaussian-process-approximations
http://papers.nips.cc/paper/6477-understanding-probabilistic-sparse-gaussian-process-approximations
http://papers.nips.cc/paper/6477-understanding-probabilistic-sparse-gaussian-process-approximations
http://www.mpi-inf.mpg.de/%5C~%7B%7Ddietz/dirfactor-notation.pdf
http://www.mpi-inf.mpg.de/%5C~%7B%7Ddietz/dirfactor-notation.pdf
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TAC.1979.1101943

[10] Andrew McHutchon. “Nonlinear Modelling and Control using Gaus-
sian Processes”. PhD thesis. Cambridge, UK: University of Cambridge,
Department of Engineering, 2014. url: ..

[11] J.P. Noel and M. Schoukens. “Hysteretic benchmark with a dynamic
nonlinearity”. In: Workshop on Nonlinear System Identification Bench-
marks, Brussels, Belgium, April 25-27, 2016. 2016, pp. 7–14. url:
http://homepages.vub.ac.be/~mschouke/benchmarkBoucWen.

html.
[12] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian

Processes for Machine Learning (Adaptive Computation and Machine
Learning). The MIT Press, 2005. isbn: 026218253X.

[13] C.E. Rasmussen. “Variational Gaussian Process Timeseries Inference”.
Jan. 2016.

[14] Sam Roweis and Zoubin Ghahramani. An EM algorithm for identifica-
tion of nonlinear dynamical systems. 2000.

[15] David Silver et al. “Mastering the game of Go with deep neural net-
works and tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[16] Edward Snelson and Zoubin Ghahramani. “Sparse Gaussian Processes
using Pseudo-inputs”. In: Advances in Neural Information Processing
Systems 18. Ed. by Y. Weiss, P. B. Schölkopf, and J. C. Platt. MIT
Press, 2006, pp. 1257–1264. url: http://papers.nips.cc/paper/
2857-sparse-gaussian-processes-using-pseudo-inputs.pdf.

[17] Michalis K. Titsias. “Variational Learning of Inducing Variables in
Sparse Gaussian Processes”. In: Proceedings of the Twelfth Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS
2009, Clearwater Beach, Florida, USA, April 16-18, 2009. 2009, pp. 567–
574. url: http://www.jmlr.org/proceedings/papers/v5/titsias09a.
html.

[18] Richard E Turner and Maneesh Sahani. “Two problems with varia-
tional expectation maximisation for time-series models”. In: Bayesian
Time series models (2011), pp. 115–138.

[19] Ryan Turner, Marc Peter Deisenroth, and Carl Edward Rasmussen.
“State-Space Inference and Learning with Gaussian Processes”. In: ed.
by Yee Whye Teh and Mike Titterington. Vol. 9. W & CP. Chia Laguna,
Sardinia, Italy, May 2010, pp. 868–875. url: ..

[20] Eric A Wan and Rudolph Van Der Merwe. “The unscented Kalman
filter for nonlinear estimation”. In: Adaptive Systems for Signal Pro-
cessing, Communications, and Control Symposium 2000. AS-SPCC.
The IEEE 2000. Ieee. 2000, pp. 153–158.

58

.
http://homepages.vub.ac.be/~mschouke/benchmarkBoucWen.html
http://homepages.vub.ac.be/~mschouke/benchmarkBoucWen.html
http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf
http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf
http://www.jmlr.org/proceedings/papers/v5/titsias09a.html
http://www.jmlr.org/proceedings/papers/v5/titsias09a.html
.

[21] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. “Gaussian Pro-
cess Dynamical Models for Human Motion”. In: IEEE Trans. Pattern
Anal. Mach. Intell. 30.2 (Feb. 2008), pp. 283–298. issn: 0162-8828.

59

	Introduction
	Background
	Dynamical Systems
	Multivariate Gaussian Distributions
	Gaussian Processes
	Sparse GPs
	Gaussian Process State-Space Models
	The Variational GP-SSM
	Variational Optimisation of a GP-SSM
	Autoregressive Models

	Related Work
	Design and Implementation
	Implementation
	Transition Function Terms
	Entropy
	Likelihood
	Complexity

	Analytic Prediction
	Predicting

	Datasets
	1D Example
	Cart Pole
	Bouc-Wen

	Implementation and Evaluation
	Learning
	1D Toy Model
	Inference of Hidden States

	Cart Pole
	Reduced Cart Pole

	Bouc-Wen

	Summary and Conclusions

