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Abstract

Investigating variational Gaussian process state-space
models with Gaussian likelihood

We have demonstrated a principled method to infer the properties of dy-
namical systems, the doubly variational Gaussian process state-space model
(GP-SSM): combining previous work on variational approaches to GP-SSMs
with a further variational assumption which allows a fully analytic lower
bound on the marginal likelihood.

Previously unpublished work on this topic is put into context, and extended
to deal with testing and prediction, which can be achieved fully analyti-
cally. We show that the variational GP-SSM is able to learn the dynamics
of complicated systems such as the cart-pole, and is also able to infer un-
derlying processes, such as integrating an impulse twice to attain a position,
and finding some underlying structure in the Bouc-Wen nonlinear system
identification dataset.

In a comparision to an autoregressive (AR) model, the GP-SSM was not
much better than the AR in a 5D cartpole problem, whilst being much more
costly to train and test. However, the system fared better than the AR model
when two of the underlying variables were hidden: it was able to infer their
existence and beat the AR model in initial predictions. While both the AR
and GP-SSM model performed badly after a dozen or so predictions, the
GP-SSM also drastically underestimated its own uncertainty (as is common
in variational approaches to Bayesian learning). As in previous work with
VFE approximations, we find that progress is stymied by technical issues in
performing the optimisation, including the model getting stuck in local min-
ima, and sensitivity to initial conditions. Future work will focus on ensuring
robustness of this optimisation, and clarifying the ability of the model to
infer entirely unseen latent processes.
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Chapter 1
Introduction

Many interesting problems can be formulated as dynamical systems, where
noisy glimpses are observed from some underlying process. Existing ap-
proaches to these problems are very data-inefficient, requiring many thou-
sands of samples to obtain any idea of the system’s dynamics. This hinders
their usefulness in settings where we have restrictions on the amount of data
we can observe: such as computationally intensive simulations, or when lim-
ited by latency with the outside world. We wish to develop a principled
method to infer characteristics of dynamical systems from observations, try-
ing to use all the relevant information optimally. Furthermore, we would
prefer if such a method were able to deal with complicated nonlinear sys-

tems, such as turbulent aircraft aerodynamics.

In this dissertation, such a method is developed, using a Gaussian process
to model the complicated nonlinear functions governing systems. Previous
work on variational Gaussian process state space models from R. Frigola is
described, and C. Rasmussen’s (unpublished) implementation of a doubly
variational GP-SSM is described. This implementation is then extended to
fully cover the range of training, testing, and prediction; comparison to the
state of the art is reported. We describe successes in inferring underlying
high-dimensional processes when presented with low-dimensional represen-

tations of a dynamical system, and give a principled estimation of the di-



mensionality of the latent states.

The variational GP-SSM serves as a useful tool in the quest to develop
general-purpose problem-solving algorithms, especially where we have a large
amount of computing power or time and we wish to extract all the informa-

tion from a small amount of data.



Chapter 2

Background

2.1 Dynamical Systems

A dynamical system is a very general class of mathematical problems in which
a system is represented as a vector x; at time ¢ in an n-dimensional space.
The dynamics of the system are encoded in a transition function which maps
a state at time ¢ to the state at time ¢ + 1.

As a simple example, we can consider the system of an ideal pendulum un-
der gravity, where given the state of the system at time ¢, we can find the
state of the system at a later time ¢’. We require two independent pieces
of information to characterise the state of the system, such as the angular

displacement and the angular velocity.

The least number of parameters required to uniquely define a dynamical
system’s state is known as the dimensionality of the system, and determines
many of its properties. For instance, a theorem by Poincare and Bendixson
1901, shows that chaotic behaviour only occurs for continuous dynamical

systems of dimension 3 or greater.

Although some systems, such as the pendulum, may be solved analytically,

finding exact expressions for the state in the future, more general systems are



analytically impossible to solve and so must be approached in an approximate

manner.

Dynamical systems are a very general framework in which to explore the evo-
lution of systems, but they have a definite structure which can be exploited.
That is, instead of attempting to directly predict future trajectories of the
system from all of the past observations, we can try to learn the underlying
transition function from the past observations, predicting future observations

by using this inferred function.

However, typically transition functions of dynamical systems are highly non-
linear. For instance, the simple pendulum example described above cannot

be solved algebraically when the angles involved become large.

We can deal with such systems in several different ways. Omne approach
is to find a set of nonlinear transformations which simplify the function,
i.e. learn a convenient representation. This is the approach taken by deep
learning systems. In the pendulum example above, we can represent the

state transformation more conveniently in momentum-energy phase space.

We can also use an approach that can explicitly model complicated nonlinear
functions. In the following work we use Gaussian Processes as a powerful tool

to directly handle these functions.

2.2 Multivariate Gaussian Distributions

Since we will make heavy use of Gaussian distributions, it is worth reiterating

several key results.

We will use the result of conditional dependence of a Gaussian, i.e. given
that a vector & ~ N (pu, ), with

Yy X
o x ’ o= 251 7 > 1T1 12 ’ (2.1)
T2 1o Sy o



the conditional probability p(x;|zs) also follows a normal distribution pa-

rameterised with p’, ¥/, where
B =y + 21T2ZI11(5131 — Hy) and Y =% - Z1T2Ef11212' (2.2)

We will come across a few complicated expressions involving kernel matri-
ces that are actually denoting a very simple conditional dependence when

refactored into this form, so this equation is worth keeping in mind.

2.3 Gaussian Processes

A Gaussian Process is a collection of variables, of which any finite linear
combination has a joint Gaussian distribution: see C. E. Rasmussen and
Williams 2005| for a comprehensive description. The most natural motivation
for their use in machine learning may be to view them as a generalisation of a
radial basis function (RBF) model. In an RBF model, the predicted value of
a function at a point is computed from a linear combination of a finite number
of Gaussians, centred at points in the prediction space. In a Gaussian process,
we have such a contribution from every point in the space, and our vector of
weights in the RBF case is replaced with its infinite-dimensional analogue -
the covariance function K (xi,xy) giving the contribution to the prediction
of ®y from x5. Excitingly, after marginalising out the predictions from all
points in space, we are left with a Gaussian describing the distribution of
the predicted value at the point we are interested in. This allows us to
naturally capture our uncertainty in point estimates. Furthermore, if we try
to learn a function producing data with a GP, as a nonparametric method,
they do not make a maximum-likelihood estimation of any parameters of the
function. Instead we get a distribution over all possible functions, conditioned
on the points that we have observed. The choice of covariance function K
allows us to encode very general assumptions about the properties of the
function we are trying to predict, such as differentiability, periodicity, etc.

GPs are a very good choice for our representation of the state space model



transition function, as they provide a full description of the uncertainty in the
estimation of the transition function, instead of a single maximum likelihood

estimation.

See figure for an illustration of Gaussian process regression and the in-
tuitive way which a GP naturally captures the increasing uncertainty of the

prediction as we head further from the observations.

Figure 2.1: A plot from C. E. Rasmussen and Williams 2005 showing Gaus-
sian Process regression. On the left, the prior distribution over functions is
shown, along with several examples of functions drawn from that distribu-
tion. On the right, the posterior over functions after several data points have
been observed. Intuitively, the posterior is tighter near the observations (as
we know the function must have a value near the observed value), and looser
further away from the observations.

2 2

output, f(x)
output, f(x)
o

N
-5 0 5 -5 0 5
input, x input, x
(a), prior (b), posterior

However, GPs do have considerable disadvantages. The main obstacle to
their application is the computational complexity of prediction, which in-
volves inversion of a matrix and goes as O(n?) for n observed data points.
Recent work has provided many different sparse approximations to a full
GP, which introduce M inducing inputs. The output of the GP is condi-
tioned on these inputs instead of the full number of observations, reducing

the complexity of prediction to O(nM?).

Recent work such as Titsias 2009 has provided a variety of techniques to

choose these inducing inputs while preserving as much information as possi-
ble.



2.4 Sparse GPs

The main drawback of Gaussian Process methods is their computational
complexity, which can be reduced with sparse methods. Central to these
approaches is the question of how the set of inducing inputs z is chosen.
Although early approaches to sparse methods included obvious choices such
as choosing a simple subset of the data points, more sophisticated meth-
ods allowed the inducing inputs themselves to be treated as parameters for
the GP, and jointly optimised along with the hyperparameters of the GPs.
The two predominant sparse methods are the Fully Independent Training
Conditional (FITC), introduced by Snelson and Ghahramani [2006, and the
Variational Free Energy (VFE) approach, introduced by Titsias [2009. We

can summarise the key properties of the two approximations in table [2.1]

Table 2.1: Comparison of the two leading sparse approximations to Gaussian
Processes, Variational Free Energy (VFE), and Fully Independent Training
Conditional (FITC), with comments sourced from Bauer, Wilk, and C. E.
Rasmussen 2016

VFE FITC
Noise Variance Can Severely Underestimate — Generally Overestimates
Additional Inducing Inputs Can Ignore Always Improves Performance
Many Inducing Inputs True GP is Global Minimum True GP is not Global Minimum
Optimisation Can be Difficult to Optimise Easy to Optimise

While the FITC method often performs well in practice, if aggressively op-
timised it can give somewhat pathological results with wildly oscillating
amounts of noise. In this work, we follow the approach of Frigola in using a
VFE approximation, as the guarantee that the approximation to the true GP
always gets better if we add more inducing inputs provides a straightforward
method to trade off increased computation for increased accuracy. Of course,
knowing that the sparse approximation is close to the exact answer if we use
enough inducing inputs doesn’t let us know if we have used enough inputs
or not. Along with the technical difficulties that can occur in optimising the
VFE bound, we should keep in mind the danger of using too few inducing

inputs.



2.5 Gaussian Process State-Space Models

Knowing which variables depend on each other in a model is crucially im-
portant. This can be summarised concisely by a graphical model (see Bishop
2006 for more details). A Gaussian process state-space model is described by
the model in figure 2.8l We follow the convention in Dietz[2010} with shaded
circles representing observed variables, unshaded circles representing latent
variables, and a thick black line representing variables drawn from the same
Gaussian process. Note that the thick line implies that functions drawn from
the GP are conditioned on all the latent x states, not just the immediately

preceding one. The diagram shows that the central object in our model is the

Figure 2.2: A graphical model for the conditional dependencies in the Gaus-
sian Process State Space Model.

inferred transition function f, which is described by a distribution over func-
tions according to a Gaussian process. The latent state at a time ¢ is given
by evaluating the transition function on the state at time ¢ — 1, (along with
some deterministic control inputs w4 and adding some noise (process noise)).
The observations are then obtained from the likelihood function (generally

expressed as a parametric function p(y,|x;, 6,).)

Crucially, the latent process and state is entirely unobserved, and inferred

from the observations.



The model is then described with the following conditional dependencies, as
described by Frigola 2015

f(®) ~ GP(my (), kf(z, x')), (2.3)
@y ~ p(wo), (2.4)
fi= J(@), (2.5)

il fe ~ N(f1, Q). (2.6)

Yl we ~ p(y, |z, 0y). (2.7)

In this formulation, we clearly separate out the uncertainty due to the lack of
knowledge of the dynamics of the system, which is given by the uncertainty
in the predictions of f from the GP in equation [2.3} the uncertainty due
to measurement error, which is given by the parameters 6 of the likelihood
function in equation 2.7; and the uncertainty due to stochasticity in the
process itself, which is described by the covariance matrix () in equation [2.6]
Specifying the conditional dependencies of the variables in the model tells us
exactly how we should invert the generative process of the model to infer the

underlying states using Bayes’ theorem.

2.6 The Variational GP-SSM

We can read off diagram [2.8] to see that the joint probability of the model is

T

p(y,z, f) = HP Yy, |2t Hp e, | FO)P(Fil Fram1s Tre1)- (2.8)

t=2
In order to speed up inference when there are many data points, augmented
inputs z and targets v = f(z) are chosen so that the augmented joint prob-
ability is

p(y,z, f,v) = pylz)p(z, flv)p(v). (2.9)

9



Unfortunately exact inference in this model is completely intractable. A
variety of methods for overcoming this have been proposed, including using

sampling methods, or variational approaches.

2.7 Variational Optimisation of a GP-SSM

Methods to perform approximate Bayesian inference generally fall into two
camps: numerical sampling techniques, and algebraic variational techniques.
Whilst sampling techniques are typically guaranteed to result in the exact
posterior, given enough time to converge, variational approaches rely on a
specific assumption about an approximate distribution (such as factorisation
properties or a chosen functional form), which limit the accuracy of the ap-
proximation: if the variational assumption is not good, then the variational
approach will not do very well. However, variational approaches result in
an analytic solution which often gives more insight than a numerical solu-
tion, even if the numerical solution is more accurate. In Frigola 2015, the
derivation of the variational GP-SSM is described, which we reproduce in

this section.

In the variational approach, we wish to find the most probable model (i.e. the
values of the inducing inputs and latent parameters) given the observations
we have of the system. Although we are not able to compute the probability
of the model directly, the standard variational approach (see Bishop [2006)

allows us to derive a lower bound for its value, namely

plx, f,v,y) >
q(z,f,v)

@ f.0) (2.10)

log p(y|0) > <log

where v are our chosen inducing targets. Note that we have chosen ¢ as an

approximating distribution to the real probability p(x, f,v).

Substituting in the expression for the joint probability of the model, this is

10



log p(v)p(@o) [T=y P(Uil F 11> @ou1, wp(y,|2)p(ai | ) (2.11)
Q(wa f7 ’U) q(z, f,v).

In order to make the following equations tractable, a suitable choice of

q(x, f,v) is needed. We choose

a(@, f.0) = q()a(@) [ [ (£, F 1o 201, 0). (2.12)

t=1

The terms which are dependant only on f cancel out leaving us with a much

simpler lower bound,

(2.13)

T
<10g p(o)p(wo) [T ply,x)p(ail ) >
v)q(x
Our assumption of the factorisation of p(x, f,v) is the variational assump-
tion, and is the key assumption made in the whole derivation. What is the
content of the assumption? We are assuming that the probability of a func-
tion f is conditional only on previous function draws, the inducing inputs,
and previous latent states. We are also assuming that the probability of v
doesn’t depend on the latent state &. This seems to be a very reasonable
assumption, especially when there are sufficent inducing inputs, given that

the zs are simply there to support the GP.

Substituting in our choice, we find that the evidence lower bound (sometimes

known as the ELBO) is given by a sum of different terms,
L(q(v),q(x),0) = —KL(q(v)||p(v)) + H(g(x)) + (log p(%0)) ;o) (2.14)

T
+ Z <<10gp<wt’ft)>19(ft|“’f1’U)>q(
t=1

+ (lo x ,
(o) (log p(y|®)) 4y

(2.15)

11



where KL(p, q) is the Killback-Leibler divergence between two probability
distributions p, ¢, and H is the entropy.

It is possible to prove that the functional form of the distribution for v
which maximises the lower bound is a multivariate Gaussian. This extremely
fortunate result doesn’t require any asumptions further to the factorisation
of g(v) made above. Furthermore, the mean and covariance of ¢(v), u, %,

are both functions of the two sufficient statistics

Z <Kmt 1,2 71mt>q(mt71:t)y
v, = Z<Kwt Lz _1 K, _ 1,Z>q(mt,1),

(2.16)

If we compute the expectations over g(v), we find that the lower bound on

the evidence is

L(q(v),q(x),0) = — KL(q(v)|lq(v)) + H(q(x)) + (log p(20))y(a)  (2.17)
+ Z (_% <(Q71(Bt_1 + At_lEA;r—l))>q(wt1)> (218)
+ (log N(@e| A1, Q) 4y 1) (2.19)
+ (og (p(y|+))) 4y - (2.20)

where A and B are given by

At—l - Kmt,l,szl (221)
Bt—l - Kmtfl,zctfl - Kmtfl,zKile,cctfu (222>

and K, , is the Gram matrix (K, .);; = k(x;, 2;). Referring to equation
we can interpret the term A; ;p as the mean prediction of the state
at time ¢, extrapolating from the state at time ¢ — 1, conditioning on the
inducing inputs z. We can also see that the predictive covariance at time ¢

is given by the expression B;_;.

12



So if we wish to carry out a variational approximation to a GP-SSM model
such as the one described in this chapter, we know the optimal distribution
for q(v), but we are left with an open question as to what distribution to
use for ¢(x). Luckily, we are able to find an explicit optimal form of this
distribution. We find that the optimal distribution is

T
1
q*(x) o< p(xo) Hp Yy|z:) exp (—§tT(Q1(Bt—1 + At—letT—l))) N(zr|Aiip, Q).
t=1
(2.23)

This is a somewhat simpler functional dependence, which can actually be
interpreted as a state space model itself. However, in this case the model
factorises in a Markovian fashion: the probability of a state x; depends
only on the previous state @; ;. The state transition function is clearly not
Gaussian, as it has a complicated dependence on the B; ; and A; ; terms
(which are nonlinear, but Markovian as the only latent state they depend
on is x;_1). In Frigola [2015, evaluating the posterior through this nonlinear
transformation was achieved with Monte-Carlo Markov chain methods. In
the present work, we deliberately choose to use a non-optimal functional
form for ¢(x). However, our choice of g(x) to be Gaussian does allow us
to sidestep any use of approximate sampling methods and let us study the

maximum likelihood model analytically.

2.8 Autoregressive Models

Predictions on dynamical systems can be made using autogressive (AR) mod-
els. An nth order linear AR model, denoted AR(n), is given by the equation

predicting an observation at time ¢,

N
X =Y a;Xi+Z (2.24)
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Where Z is a random variable, Z ~ A(0,1). We might expect such a model
to perform very badly, as it doesn’t take into account a latent process at all,
and there isn’t any distinction between observation and process noise. This
latter point is particularly troubling, as a small amount of noise into the
inputs of a function can result in very wrong outputs, as extensively studied
in McHutchon 2014. Despite these downsides, AR models are widely used,

and are reasonably successful.

More recent work has introduced nonlinear AR models, such as the GP-
FNARX setup. In this framework, we drop the linearity condition, and sim-
ply predict the nth observation as a function of the preceding observations,

using a Gaussian process to model our function.

Using a Gaussian process to represent our function also allows us to propagate
uncertainty through our predictions analytically. We would certainly expect
that our predictions will become less accurate the further forward in time we
look, so having a directly estimation of the uncertainty associated with each
prediction is very useful. A Gaussian process over the autoregressive model

gives us a very natural approach to this, with the prediction given by

Y, = f(yt—lv"'7yt—N7ut717~"7’u'th)- (225>

Figure 2.3: A graphical model for the conditional dependencies in the 3rd
order Gaussian Process Autoregressive Model, in training.
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Chapter 3

Related Work

As described by Roweis and Ghahramani 2000, the idea of using the under-
lying probabilistic structure of a dynamical system to interpret observations
has a long history. The first widely-used application of the dynamical system
framework was the Kalman filter, introduced in Kalman 1960, which corre-
sponds to a state-space model with a linear transition function and Gaussian
likelihood. These restrictions on the form of the dynamics allow the Kalman
filter’s equations to be solved cheaply and exactly: key reasons why it is
used widely to aggregate sensor readings in fields as disparate as aircraft

autopilots, econometrics, and signal processing.

Dropping the linear assumption increases the complexity of the problem to
a huge degree. The extended Kalman filter tries to handle nonlinear systems
by linearising the system around the current point in state space. Although
this ad-hoc extension of the Kalman filter does tend to work well with cer-
tain nonlinearities, this depends to a large extent on knowing the accurate
dynamics of the system, as Jacobians are required to calculate the required
linearisation. See Ljung [1979 for more details. More recent work on the
unscented Kalman filter, introduced in Wan and Van Der Merwe 2000 have
achieved remarkably large gains in accuracy for the same computational com-

plexity.
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In the related field of system identification, the early work relied on assump-
tions of a certain parametric models, the parameters of which were then
inferred from recorded data. More recent work has attempted to relax the
restrictions on specific parametric forms by introducing nonparametric meth-
ods such as neural networks or Gaussian processes. The recent focus on deep
learning arises from its remarkable ability to learn some underlying lower-
dimensional set of latent variables describing e.g. image classes in a high-
dimensional space of pixel intensities (see Goodfellow, Bengio, and Courville
2016)) for more detail. Similarly, by not relying on a parametric form for the
transition function in a dynamical system and fitting a Gaussian Process for
the proposed transition function, the GP autoregressive model described in
section can give very good results. Since we assume our inputs will be
corrupted by some observation noise, we can do even better by smoothing
the data before we feed it into our regression. Although this approach does
not attempt to understand the structure of the dynamical system, in practice

it serves very well.

Another approach to controlling systems, Reinforcement Learning, again
sidesteps the problem of learning an accurate model of the dynamics of a
complex system and instead attempts to learn an accurate approximation to
the value function, which maps actions onto the expected rewards obtained
by taking that action. Extremely impressive results have been obtained by
deep reinforcement learning algorithms on diverse problems such as Go or
Atari games (see Silver et al. 2016). However the representation of the en-
vironment that deep learning systems create is very opaque to interpret, be-
ing nonparametrically described by thousands or millions of neuron weights.
Furthermore, RL systems are data-inefficient, requiring very many training

periods to perform well.

In recent years Gaussian process latent variable models have started to be
widely used. The variational GP-SSM approach described in the previous
section describes the reasoning behind their use. Along with the variational
approach, many attempts have been made to simplify the GP-SSM model to

make a solution tractable. These include assuming a parametric form for the
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GP based on R. Turner, Deisenroth, and C. E. Rasmussen [2010, and much

work involving sampling methods in Wang, Fleet, and Hertzmann 2008.

There are a wide variety of approaches to solving dynamical systems. The
approach outlined in this thesis has the advantage of being fully analytic and
not relying on sampling methods, and extends a long history of Gaussian

process methods used to comprehend dynamical systems.
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Chapter 4
Design and Implementation

Building on the previous work in the area, we discuss the (previously unpub-
lished) implementation of a doubly-variational GP-SSM by C. Rasmussen
and describe how we can extend this framework to derive maximum-likelihood

predictions.

In order to allow tractability, and to remove any need for sampling methods,
several further assumptions are introduced on top of those discussed in the

previous chapter.

Squared Exponential Covariance Function We choose the covariance
function in the Gaussian Process over the transition function to be
a squared exponential kernel as described in C. E. Rasmussen and
Williams [2005. In order to eliminate any sampling, we are forced to
choose a kernel which can be analytically integrated against a Gaussian
density. This introduces one hyperparameter per latent dimension per
GP, the characteristic length scale £. As discussed in C. E. Rasmussen
and Williams 2005, the SE covariance function has been the standard

choice of covariance function for Gaussian processes for decades.

Gaussian Likelihood We assume that p(y,|®;) is Gaussian. This allows us
to solve for an optimal mapping from the latent space to the observation

space. Assuming that errors have a Gaussian form is a very common
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assumption in physical science, and is often justified by appeal to the
central limit theorem (if the errors are generated by many interactions
of independent errors, the total observed error will be approximately
Gaussian). If the likelihood was in actual fact not Gaussian, we would
expect that our method would still be able to form a good model if we
allowed it more latent states, as it could ‘absorb’ the likelihood into

the state-space transition function.

Gaussian Latent Variable Distribution The crucial assumption made
in this implementation is that the distribution ¢(x) is Gaussian. Equa-
tion shows that the optimal ¢(«) has a Markovian structure, but
is complicated by non-Gaussian terms involving A and B, which are
ignored. Although we can prove that our choice of ¢(x) is non-optimal,
we hope that the increase in speed from the fully analytic treatment
of the optimisation allows for better overall performance than a more

optimal choice for g(x).

While the first two assumptions may be the best assumptions in certain cases,
such as if we know our transition function is infinitely differentiable with
Gaussian noise, the final assumption is a deliberate choice for a suboptimal

distribution, in a trade-off in order to achieve an analytic solution.

When evaluating a model that tries to learn the dynamics of a system, the
most obvious approach is to ask the model to predict a new sequence and
measure the accuracy of this generated sequence. However, we need to spec-
ify some sort of initial conditions for the generated sequence so that we can
compare to a specific real sequence. The natural way to provide these initial
conditions is to truncate a generated sequence, showing the first few obser-
vations to the model, then evaluating its predictions against the remaining

observations. This means we have to develop the algorithm for three cases:

Training Given some valid training observations and control inputs, jointly
find the nonlinear transition functions and underlying latent states cor-

responding to the maximum likelihood system.

Inference on a test seed set Given some observations, control inputs, and
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a trained model, find the latent states corresponding to the observa-
tions, while fixing the transition function and underlying mapping from

latent states to observations.

Prediction Given a set of latent states corresponding to the output of the

previous case, and control inputs, output future predictions.

The first case is the focus of an unpublished note (C. Rasmussen 2016).
In this project we developed the second and third cases. In practice, the
output in the first two cases was the negative log marginal likelihood and
derivatives, allowing a range of different algorithms to be used to solve the

gradient descent problem to find the optimal set of parameters.

4.1 Implementation

Table 4.1: Showing the key variables in the implementation.

Variable Meaning

E Dimensionality of the latent space
U Dimensionality of the control inputs
M Number of inducing inputs

N Number of timeseries

T(n) Length of the timeseries

Since we wish to train our model by gradient descent, we must calculate
the lower bound on the log likelihood, and provide derivatives. The lower
bound follows from equation where we additionally explicitly compute
the expectations over g(x). We introduce the following notation for the

distributions ¢(z),

p Iy - N oy Et,t Et,t—i—l (4 1)
Tit1 Hi ’ 2tT,t+1 itt1,t4+1

Which identifies the joint probability of a particular value of the underlying

state at t and ¢t + 1 as a Gaussian with a block-matrix form for the covari-
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ance matrix. Due to the marginalisation property of a Gaussian, we can
quickly identify the marginal distribution p(x;) = N (g, X:4), and similarly
for p(x;11). For an illustration of how these distributions look in the simpler

case when the ¥ matrices are scalars, see figure [5.1.1]

The ELBO arises from several sets of terms, which can be classified into tran-
sition function terms, which govern the interaction of the latent space points
with the underlying Gaussian process transition function; entropy terms
which penalise overly uncertain ¢(x) distributions; and likelihood terms which
penalise latent space points which correspond to observations differing from

those actually observed.

The transition function and likelihood terms are different in the testing case,
as we are using a fixed transition function and latent space mapping deter-
mined in prior training, instead of calculating this based on the latent points.
This means that the expression obtained for the ELBO is quite different in

the training and testing case.

4.1.1 Transition Function Terms

The functions W, o completely describe the interaction of the latent space
points with the inferred transition function f. W is defined in equation [2.16]
We run into ¥ in two ways, as it is used in parameterising the optimal ¢(v)
Gaussian distribution, but it also appears when computing the expectations
in equation[2.17} In the training case this leads to considerable simplification,
but in the testing (latent state inference) case we define U* as the expectation
over test data, leaving W to stand for the expectations over (fixed) training
data.

In the training case, we find that the expectations over g(x) can be expressed
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through the terms W, ¥y, K. as

E
% Z log |(K€ _l_ \1126)_1Ke| ‘l’ trKe_l\I’26 + _{_\Il]—e(Ke + \1,26)_1‘1,16
e=1
d (4.2)
—3trQ 7 Y (1 + D) — T3t log| Q) — HE log (2m).
t=2

In the testing case, the relevant terms are

E
1Y K W (K 4 Wao) W, — tr(Ke + W) W U (K, + o) ™03,
e=1
T

W (K4 Wo,) W — 20Q 7Y (4, + 50

t=2
— Tlog |Q| — T2 E log (27).
(4.3)

We also need to provide the relevant derivatives - with respect to ¥ in the
training case, and with respect to ¥* while W is held constant in the testing

case. These are found by repeated application of the chain rule.

Explicit Calculation

Explicitly calculating ¥ involves computing the expectation of K over ¢(x)
described in eq. [2.16, We need to fully detail this computation, as it will be

used in finding the optimal forward prediction in the test case.

To compute these expectations, we multiply the joint g(a;, ;1) by the co-

variance function, which is written as a joint Gaussian itself,

(%01 2) = eXp(_%[Xt_l_Zie}T[Ae 0][Xt—1_Zie}>’

Xt Xt
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so that

Q“Dl,i,e :/the(xtb Zie)Q(thlzt)dthldXt = (Ht + Et,tfl[Ae + Etfl,tflrl(zie - ,Ut71>)

X T+ A S|P exp (= 3oy — Zie) [Ae + Smr1] " (ey — 2ie)).
(4.4)

Q‘Ifu,j :/ke(zie;Xt—l)ke(xt—hZje)Q(Xt—l)dxt—l = eXp(—(Zie - Zje)Ae_l(Zie - Zje)/4)

X |] + 2Ae_121t—1,t—1|_1/2 eXp<_(Zie+% - ﬂ't—l)[Ae/2 + Zt—l,t—l}_l(w% - :u’t—1>/2
(4.5)

4.1.2 Entropy

The entropy of the Gaussian ¢(x) distributions is simply given by

it DI
.
2t,t+1 Y141

and is the same in the training and testing case.

T

H(q(x)) = %(1 +log (27)) + % Zlog

t=2

T-1
- % Z log |2t‘7
t=2

(4.6)

4.1.3 Likelihood

The terms relating to the likelihood are slightly more complex, as they tie

the model to observations.

The latent states map to the observed values through a linear mapping, so
that
p(ylz:) = N(Cx: + C', R). (4.7)

When computing the expectation over g(a;), which itself has a Gaussian dis-

tribution, the x; marginal covariance ¥; is transformed through the mapping
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to give

T
> (ogp(yi|@:)) gy = — 5 log(2m) — § log |R|
t=1
T
3R (g, — Cp)(y, — Cpy) T+ CE,CT.

t=1

(4.8)

It is possible to find the mapping R* and C* that maximises the likelihood:

T T T T
-1
B = Yyl O myT|, and ¢ = Yyl |3 s3]
=1 t=1 t=1 t=1

(4.9)
In the training case, we wish to vary the g(«) distribution in order to find
the most likely latent states, which causes a corresponding change in the
maximum likelihood values of the parameters R*, C*. In the training case,

we can substitute these back to equation 4.9} giving a simplified likelihood,
L£*=—2L(1+log (27m)) — T log |R*|. (4.10)

However, in the testing case we use the latent space mapping that was op-
timised in the training case: we don’t want to change our model when it’s
looking at testing data. Hence we don’t get a simplified form of the likeli-
hood, and must calculate it in full from equation [4.8 In both the training
and test cases, we find that the derivatives are
L* L*
= C'"R Y(y,—Cu,) and = —1C"R7'C

op, azt,t

R=R*,C=C*, R=R*,C=C*,

4.1.4 Complexity

The number of variables to be optimised by the minimiser is E?(M + 2T N +
1)+ E(T'N + MU + U + 1). This limits our choice of optimisation routine -
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Algorithm 1: Overview of the variational Gaussian process state-space
model algorithm. In the training and testing cases, a gradient descent al-
gorithm needs to be used to find the optimal setting of all the parameters.
Input

e In the training case:

— A set of inducing inputs

— Parameters describing the mean, p, and marginal and pairwise
covariances 2, 2,1 for each latent time point.

— A set of observed data and control inputs

e In the testing (inference) case:

— A (fixed) set of inducing inputs

— Parameters describing the mean, p, and marginal and pairwise
covariances 2, >;;—1 for each latent time point.

— A set of observed data and control inputs

e In the testing (prediction) case:

— Parameters describing the mean, p, and marginal and pairwise
covariances ¥, 2,1 for each latent time point, corresponding
to an optimised latent state

— A set of control inputs

Output:
e In the training case:

— The negative log marginal likelihood £ and derivatives with
respect to inducing inputs, hyperparameters, and latent states.

e In the testing (inference) case:

— The negative log marginal likelihood £ and derivatives with
respect to latent states.

e In the testing (prediction) case:

— Predictions for the time points after the end of the optimised
timeseries, and the joint covariance matrix of these predictions.

function Variational Gaussian Process State Space Model
if Predicting then
| Predict observations using analytic expression
else
if Testing (inference) then
Using fixed ¥, K C, R,
Calculate £ and derivatives with respect to latent state parameters.
else
Update ¥, K, C, R
Calculate £ and derivatives with respect to latent state parameters,
hyperparameters and inducing input locations.
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using a full BFGS solver requires O(V?) memory to store the Hessian for V'
variables, which quickly becomes too much to fit in RAM. However, methods
such as conjugate gradients can scale to over 100,000 variables, so this is not

an insurmountable problem.

The algorithm itself takes O(E?*TNM?) time in calculating the ¥ deriva-
tives, which is the most itensive part of the algorithm. Although this rules
out training models with exceptionally large E, we are able to comfortably
train a model with 7 latent states, 50 inducing inputs and several hundred
observations on a mid-range laptop. Further optimisation, particularly inves-

tigating stochastic gradient descent, may be able to give significant speedup.

4.2 Analytic Prediction

In the testing case, we have a seed timeseries for which we have inferred the
latent states. We then wish to compute a predicted future trajectory of the

system. It turns out that we can do this entirely analytically.

Predicting one point into the future is equivalent to increasing the length of
the test timeseries by one, and trying to find the parameters pu7, 3%, and
Y717 which maximise the likelihood. Due to the Markovian factorisation
property of g(x), the parameters must only depend on the previous time-

point’s mean g, and marginal covariance Xp_q 7.

Since almost all of the NLML terms do not depend on g4, we have that

oc
oy

4 0V,
Oy

E
=D UL (K +95) —tr(Q7 ) e, (4.12)

e=1

and substituting in the explicit form for U7 , we find that

le»
Wie =V, (Ko + Uoe) [T+ A7 Sy p |72

X B (4.13)
exp _é(y’T—l — Zie)[Ae + ET—I,T—I] (/J’T—l - Zie) )
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which corresponds to the mean prediction of the GP, conditioned on the

inducing inputs. For the marginal Y7 7, we find that

oL 1 ;1
= —trQ " + = log Y7 1.7 7—1.7|. 4.14
O5rr 5 Q)" + 5 82T,T‘ 0g 2 1.7, 7—1.T ( )
Setting the derivative to zero gives us
Yrr=Q+ Z*TTA,TZ%L,TAE*TA,T (4.15)
For the pair-wise marginal,
oL —E\IIT(KJr\I/)_l v, 19 | log X |
aZT—l,T = - le e 2e aET—l,T 5 aZT—l,T g 2r—_1.7,T—-1:T|-
(4.16)
This gives us
& ovy 1
-1 e — * * * — * -
0= Z U, (K + Wy) —1_2T£1,T_1ET—1,T (ZT,T - ET—EI,TZTil,T—lzT—I,T)
pt OXr a7
(4.17)
Substituting, we find that
E
Z*T_LT =Xr 171 Z ‘I’L (Ke + \I/2e)_1 (Ae + ZT—I,T—I)_l (2 —pr_y)
e=1
1
X |+ A Sr_1 | exp (- 5By = zie)[Ae + Sroira] T (o — %)),
(4.18)

which we can then substitute in to equation to find X5 7.

We can motivate our choice of 37, - by considering the prediction of the value
of 1 conditional on the value of 7_1. By equation [2.2|we have a conditional
distribution q(@r|zr_1) = N(p/,Y'), with ¥ = 55, =S0% o500 1 85 0 =
(). We can clearly see how the derived Y7 1 is exactly the variance for which

the extra uncertainty added to the prediction of the next state is Q.
The intuition for equation is that we are directly calculating the covari-
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ance E((z; — pp_1)(2j — o)) = E(zi(2j — pp_1)), from the inducing points
z. We rescale the individual contributions by (A, + ET_LT_l)_l, and then

scale up by a factor of X7_; r_; after collecting the contributions from all 2.

4.2.1 Predicting

4.3 Datasets

We worked on several different datasets, spanning a range of applications,
number of latent dimensions, and noise regimes. The success of the imple-
mentation in a large number of different settings shows that the method is
broadly applicable in many different situations, due to its weak assumptions
(that the underlying process is a dynamical system), and its robustness to
noise. We hope that if the process has too much noise, and it isn’t possi-
ble to pin down the dynamics of the system, then the model will return an
inunformative probability distribution. However, if the underlying process
cannot be described as a dynamical process, then it the model may return

nonsensical results.

4.3.1 1D Example

In order to explain the model in action, an introductory toy model of a
nonlinear system will be used. This has a latent dimensionality of 1, and a

transition function

f($)=§+ (x+%) (1_#(—%))’ (4.19)

chosen so that as x goes to 400, the function is a straight line with slope
—4, while as x goes to —oo the function is a straight line with slope 1. In

the generative process we can add a certain amount of Gaussian noise, and
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we can add a certain amount of observation noise. A plot of the transition
function is shown in figure [4.3.1]

A plot of three simulated timeseries is shown in figure The plot shows
the clear difference between process and observation noise. The 1D case is
complex enough to expose the real necessity of using a principled model that

takes into account the difference between the two types of noise.

€Tt

0.5

Tt—1

1 —05 0 0.5
—0.51

14

Figure 4.1: Showing the transition function used in the 1D case. Gaussian
noise was added to the transition function so that the process was partially
schochastic

4.3.2 Cart Pole

The cart-pole system is a very common benchmark in Reinforcement Learn-
ing (RL). It consists of a box that runs on a 1D track, which is attached to
a pendulum that is allowed to swing freely. The state can be represented
with four parameters: 0, the angle of the pendulum (measured downwards)
and rate of change 6, along with the position of the cart  and the velocity
2. The transition function is extremely complicated, and so this is a good

benchmark to try to learn the dynamics.

In order to make the learning process slightly easier, the angle is not repre-
sented directly with 6, as the fact that we measure the angle from 0 to 27
introduces an artificial nonlinearity in the dynamics when moving past the

angular origin. Instead we expand the state space by working with the sin
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Figure 4.2: Some simulated trajectories in the 1D case. The three trajectories
have the same initial condition, and have added process or observation noise,
which are both Gaussian with mean zero and standard deviation one-half.
The two noises have very different effects, with process noise pushing the
timeseries onto completely different trajectories while the observation noise
simply obscures the real state. We clearly need our models to distinguish the
two noises

and cosine of the angle instead of the angle directly. The input space to the
model consists of horizontal impulses applied to the cart, which results in
a model with a 5D state space for the latent state, augmented with a 1D
state for the inputs. However, in order to give an accurate description of
the state, we need to equip the model not only with the current input, but
also the previous force. This is because in the generative model, the forces
are applied in a finite time which overlaps with the timesteps, such that the
previous force is still being applied during the next timestep. So overall, we
have a 7D problem, counting 5 dimensions from the latent space, and two

from the inputs.

The complexity of this example does mean that we are unable to analytically
confirm that the model has identified the correct dynamics, as we are able to
do in the 1D case. However, we are able to compare predictions of the model

to the results we obtain.
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4.3.3 Bouc-Wen

The Bouc-Wen model is a commonly-used framework to examine many of
the key features of systems exhibiting hysteresis. A Bouc-Wen oscillator in

one dimension has an equation of motion

mpy+r(y,9) + 2(9) = ult), (4.20)

where
r= kLy + CLy. (421)

If the z term is neglected, the Bouc-Wen system is a straightforward damped
oscillator. Adding in the z term results in a wide range of rich phenomena.

Although z is not directly observable, it obeys a differential equation

g=ay— B (gl 2+ aylzl) . (4.22)

Including z quickly turns a simple physical system into a challenging non-
linear identification task. At the 2016 workshop on nonlinear system identi-
fication benchmarks (see Noel and Schoukens [2016)), the Bouc-Wen system
was chosen as a new model system to test upcoming methods against. We
used the dataset prepared there. Of particular importance was the addition
of a small amount of noise to the results: Gaussian noise with magnitude
8 x 107* mm. Since the typical amplitude of the system was around 1 mm,
this may not seem like a very large amount of noise. However, since we wish

to infer several hidden states (the g, z and Z states), this could be a problem.

Furthermore, the characteristic frequency of the system was 36 Hz, and so we
need a sampling frequency faster than this to capture any accurate picture
of the dynamics. A frequency of 750 Hz was recommended to capture the
nonlinear dynamics of the system. However, a very rapid sampling frequency
introduces a new problem - if y doesn’t change very much over one time step,
then the majority of the observed change in the position will actually be due

to noise. The model will need to learn the necessity of smoothing over the
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previous few position readings to get an accurate measure in the change in

position.

In fact, we found that z varied too rapidly at a sampling frequency of 750
Hz to be picked up, so a sampling frequency of 4,000 Hz was used. At this
level, the typical change in the position variable was around 5x107% mm,
which was only around seven times the noise level. We were stuck in a tricky
balancing act of choosing a sampling rate that was fast enough to gain some

idea of the dynamics whilst not so fast it was overwhelmed by noise.
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Chapter 5

Implementation and Evaluation

5.1 Learning

5.1.1 1D Toy Model

Many of the challenges and achievements studied in the more complicated
datasets are also present in the 1D case. The 1D case is significantly easier to
study, both because of the reduced computational complexity, and because
it is possible to visualise the transition function in a 2-dimensional plot.
Before training the model, it’s necessary to choose an initialisation. Since the
model relies on a gradient-descent optimisation of thousands of parameters,
an exhaustive search of this space is obviously impossible. Therefore the
model is likely to be much more likely to find a good solution if initialised

with a good first guess. The initialisations lie in three different areas:
Inducing Inputs Chosen to be randomly-distributed points, v ~ A (0, I).

Distribution of x The means were chosen to be equal to the observed data,

and the variances were chosen to be isotropic Gaussians,

q(xs, Ti41) =N <(yt,yt+1), (OE]I 5])) :

35



In practice, the optimisation did not seem very sensitive to the value

of a.

Hyperparameters We chose the initial length-scales as 0, and the initial
process noise to be 0, corresponding to unit length scale and noise level.
The length-scales corresponding to the deterministic inputs were set to

the log standard deviation of the inputs.

These choices for the initialisations generally scale to higher dimensions, al-
though the initialisation of ¢(x) is not so straightforward when there are
more latent states than observed states. In that case, we have to consider if
we wish to engineer some initialisations, or try to get the model to learn the

latent states from scratch.

Figures and shows some plots of models that have been trained
on the 1D system, showing the transition function, as well as the g(x) dis-
tributions and the inferred states for a section of the timeseries. We can see
that the model learns the correct dynamics of the system, even under quite

challenging noise conditions.

After learning the dynamics, we are able to make principled forwards predic-
tions, using the method described in section 4.2

After a model was trained, it was used to make predictions on a previously-
unseen test sequence. Five initial observations from the test sequence were
shown, and these were used to infer the latent state. The final latent state
was used to make a prediction, which was used as an input to the next
prediction. Figure[5.1.1|shows a prediction in the low-noise regime, inluding
displaying the ¢(x) distribution. This shows one of the limitations of our
variational assumption for the form of g(x), as the most uncertain points are
forced by their Gaussian shape to spread probability density over areas of
the joint space that are not near the transition function at all. In the limit
of predictions with high amounts of observation noise, we would expect that
the shape of the joint probability distribution would become spread over the
whole extent of the transition function. However, the Gaussian nature of the

distributions means the joint distribution cannot curve to follow the region
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Figure 5.1: A trained model in the almost complete absence of noise (|Q| ~
107* R ~ 10™%). Trained with 50 data points and 20 inducing inputs, the
model learns the correct shape of the transition function. The upper panel
shows the resulting Gaussian process over the transition function, as well as
a few of the individual ¢(x;, ;1) joint distributions. The lower panel shows
the observed timeseries.

near the nonlinear transition function. Underestimating the uncertainty in its
own predictions is a common hallmark of variational approaches to Bayesian

learning (see R. E. Turner and Sahani 2011)), and it seems like this model is

no different.

We expect the advantage of the GP-SSM compared to the AR method to be
the ability to distinguish between process noise and observation noise. This
allows the GP-SSM to get a much more accurate inference on the initial state
of the system, and so make more accurate predictions forward into the future.
Given this, we would expect that the AR model would fare most badly in
a regime with high amounts of observation noise, and comparatively small
amounts of data. This suspicion is confirmed in table [5.1.1, summarising the

performance of the methods’ predictive capacity in various settings.
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Figure 5.2: A trained model with high process noise and observation noise
(R =|Q| = 0.25). Here the trained states are less able to pick out the correct
states. However, the inferred states are generally closer to the actual state
than the observation. The model includes the true transition function in the
95% confidence interval of possible dynamics. We can see that the right-hand
side of the transition function is more incorrect, which we can understand by
the steeper transition function leading to more variation in the output for a
given variation in the input.

Evaluation

We evaluated the predictions with two approaches. We report the root mean
square error (RMSE) between the observations y and the predictions g, which

is given by

erars = y| = O (5(8) — y())* (5.1)



Table 5.1: Comparison of the variational GP-SSM to the order two autore-
gressive model in the 1D case, with process or observation noise. In both
cases, the given noise had a standard deviation of 0.5 and the other noise
was kept at a standard deviation of 0.01. We see that the GP-SSM is able
to do well in the presence of observation noise, and not too badly in the
presence of process noise. We report both the root mean square error and
the negative joint log probability of the observations.

Train Time Test Time RMSE (5 Ahead) NJLP (5 Ahead)

Process Noise

VGPSSM  120s 6s 2.7 0.79

GP-AR(2) 2s <ls 10.9 1.4
Observation Noise

VGPSSM  115s 5s 6.0 0.90

GP-AR(2) 2s <ls 71 25

1
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Figure 5.3: Predictions from a low-noise regime. We can see that the un-
certainty in the predicted states increases as the points go into the future.
Also evident is the inaccuracy made by the assumption of Gaussian errors:
the distributions are forced to spread their uncertainty over areas which are
far from the transition function, and so extremely unlikely for the state to
ever reach those regions of the state space. However, the model does have a
consistent handle on its own uncertainty, with e.g. its uncertainty decreasing
dramatically at time points 7 and 11. We can see this is because the previous
states are at points where the transition function is flat, so any states in the
same region will map map to the same points, reducing the error.
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We also report the negative log joint probability of the observed data yr, .r

given the seed data in the initial timeseries y, .7, .

—In (p(yTayT—lvyT—Qa"' |y17y27"'>>' (52>

In the case of our GP-SSM, we have to do some work to compute this, noting
that we can factorise the joint probability due due to our assumption of the

Markovian structure:

~In(p(Yyr, Y71, Y7 9 - - - |y17 Yo, - )) = lnp(y0)+lnp(y1\y0)+lnp(y2\y1)+. e

(5.3)
Finally, we need to relate the probability of finding a point in the latent space

to the observation space. We have that

b by
Lt N N Hy : tT,t t,t+1 ‘ (54>
Tiy1 My Zt,t—i—l Y141

The linear mapping to the observation space results in ¢(y,) = N(Cu, +
C',C¥,CT + R). So the action of the mapping in the joint space results in
a joint probability density

( Y, ) N (( Cpy + C' ) <czch +R O C7 ))
Yit1 Cpre +C' ) \CZ[CT CBnCT+R) )
(5.5)
We can then use equation to get a factorisation of the joint probability
density. When using the AR(2) model, we can factorise the joint probability
density too, but we don’t have to worry about the mapping from a latent

space to the observation space, as the predictions are made directly in the

observation space.

Note that we want our negative log joint probability to be as large negative
as possible, corresponding to a model which is certain of the correct answer.

A final point to consider is that the joint log probability gives a joint proba-
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bility over all dimensions of the output, while we report the RMSE over each
dimension separately. While this seems the most principled method to gaug-
ing how accurately the model’s uncertainty relates to the actual error, it is
not particularly easy to visualise the probability density over E-dimensional

Gaussian distributions, hence the use of RMSE in addition.

The question of when to stop is an interesting point to consider. If we’re
attempting to predict an entire timeseries ahead, then if there is any process
noise at all (which we assumed in this model), then at some point it simply
won’t be possible to predict ahead, as the noise compounds over time. So
we should report the RMSE and joint error as we increase the number of
points predicted forwards, as otherwise the total error will be dominated by

the completely ignorant final few predictions.

5.1.2 Inference of Hidden States

One of the attractive features of the GP-SSM model is the possibility of
inferring hidden states. The 1D system provides a very simple setting to
expose some of the challenges that are likely to pose problems when extending

this work to higher dimensionalities.

The lack of initialisation is an obvious problem when trying to infer the
existence of unseen states. Although we may often have hints as to how we
should initialise our hidden states, we would prefer to be able to not have
to tweak initialisations in order to infer the correct underlying dynamics.
Unfortunately in practice, without the ‘hints’ provided by the initialisation,
the minimizer was not able to discern the dynamics of the system, and found
itself in a local minimum with high process noise and observation noise. By
applying a ‘barrier function’ (see Bartholomew-Biggs [2005| for more detail),
roughly equivalent to assuming a strong prior over the magnitudes, we can
not allow the model to consider the case where the process noise is too large.
The results of limiting the process noise in this way are shown in table [5.2]
We can see that the model correctly identifies the most likely configuration

to be one with a single hidden state.
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Table 5.2: Showing the effect of imposing a restriction on the process noise
when optimising the negative log marginal likelihood (NLML). Here we use
100 data points, moderate noise with |Q| = |R| = 1072, and 30 inducing
inputs. Examining the length-scales in the third case shows that the model
has shut down one of the dimensions, with the C matrix dominated by the
element mapping the active dimension to the likelihood.

E Process Noise ~NLML Test —Inp(ys.i0)

1 Unconstrained 168 16.1
1 Constrained -202 -11.8
2 Constrained -197 0.6

5.2 Cart Pole

A model was trained on the cart-pole system described in section [£.3.2] As
in the 1D case, we show the trained model and compare the predictions to
an autoregressive model. Initialisations were exactly as in the 1D case, with
normalised observations for the latent points. The model is able to make
good predictions, as can be seen in figure 5.2l The RMSE shows that the
mean predictions are pretty similar compared to the AR model, and perhaps
very slighly better than the AR model for the initial time points. However,
the joint probability shows that the predictions are much more certain for
the GP-SSM for the initial timesteps and then become inaccurate. This
fits with what we would expect: the model structure allows the GP-SSM
to work out which latent states are there, giving better predictions in the
initial time steps, whilst the variational assumptions give the characteristic
underestimation of uncertainty leading to overconfident erroneous elections

after around 10 forward predictions.

5.2.1 Reduced Cart Pole

We can also consider the situation where we hide some of the variables, and
see if the model is able to learn these hidden states. In particular, we will

look at the situation where we hide the velocity and angular velocity, leaving
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Figure 5.4: Predictions from the variational GP-SSM and an order-2 AR
model. We see that both models are able to accurately capture the dynamics
of the system, able to predict several points forward into the future. We
also see that both methods are able to give a fairly consistent estimation of
the error in their estimates. Figure [5.2] gives a quantitative account of the
accuracy of both predictions
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Figure 5.5: RMSE for predictions ¢ — 5 steps ahead on the 5d cart-pole
dataset, averaged over forwards predictions from each time point in 10 test
sequences. The two RMSEs are very similar - as we would perhaps expect
as the AR model is in some sense the GP-SSM without latent variables.

the position, and sin and cosine of the pendulum angle.

Models with varying numbers of latent states were used, with each hidden
state initialised to the difference between observed states and previously ob-
served states: with the aim to get the model to recognise these ‘velocity’

terms. Results can be seen in table 5.3

Table 5.3: Models with differing numbers of latent states on the 5-
dimensional cart-pole dataset, and the optimised NLML found. We find
that the model identifes three hidden states, presumably corresponding to

the velocities of the three observed states.
Latent Dimension Train £

3 -300
4 -700
) -1700
6 -1900
7 -1750

We had a particular focus on a model with six latent states, with the first

three states initialised to the normalized observations, and the remaining
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Figure 5.6: Predictive power of the two competing methods on the 5D cart-
pole set. Here we see that the GP-SSM is able to make better predictions for
the first few time points, but that it quickly reverses track and makes bad
predictions, whilst the AR model makes fairly noncommittal predictions for
all future predictions. Shown are the joint log probability ¢ steps ahead on
the 3d cart-pole dataset, averaged over forwards predictions from each time
point in 10 test sequences.
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three states initialised to the normalized difference between the observations
and previous observations. After much optimisation, the model trained to
deliver a model that used all six Gaussian Processes. We would like to be
able to analyse what the model is inferring from the data, which we can do
in an approximate fashion by looking at the length-scales for each Gaussian
process. The model can ‘shut down’ an input to one of the GPs by increasing
the length-scale in that dimension of the state space. We can see a plot of a
badly optimised model that hit a local optimum with a completely inactive
GP in figure [5.2.1}

By looking at which GPs’ length scales are small, we can see the logical
structure of the model the GP-SSM has constructed. The logical structure

of the derived model is given in figure [5.2.1

Since some of the functions depend only one two inputs, we can plot these
functions in a 3D figure. Some of those are shown in figure The model
seems to have essentially decoupled the system into two disjoint parts, with
one GP modelling the position of the centre of mass of the cart-pole system by
integrating in the applied force. This actually allows the 6D system to make
better long-range predictions of x than the model with all five observables,

at the expense being unable to make more confident shorter-term estimates.

The remaining four GPs are left to model the dynamics of the pendulum and
any interactions with the cart. As we might anticipate, to a large degree the
model’s derived dynamics are not very easily understandable due to mixing
between the different GPs. The states 4, 5 and 6 are not coupled to the
likelihood to any degree, so they are merely acting as supporting information

for the predictions of the states 1, 2 and 3.

In any case, the model is able to give good predictions going into the future,
although it does not do any better than an AR(2) model except in the long

range prediction of the position.
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Figure 5.7: A graphical model for the conditional dependencies in the GP-
SSM trained on the 3d cart-pole dataset, with 6 latent states. Looking at
the mapping from latent to observation space, we see that states 1,2,3 are
coupled to the corresponding observation states 1,2,3, whilst states 4,5,6 are
not coupled to the observation to any degree.

5.3 Bouc-Wen

Inferring the hidden states in the Bouc-Wen model was a much more sig-
nificant challenge. In the 3D cart-pole case, it is easy to understand the
physical meaning of all of the observations. In the Bouc-Wen system, the
governing differential equation is more complicated. Furthermore, in the
Bouc-Wen case we wish to infer several unobserved states (y, z, 2) from a

single observed state, y. However, some limited sucess was achieved.

Several models were fitted, with varying numbers of latent states. For the
case with one underlying dimension, the states were initialised to the observed
values of y. For increasing latent dimension, the states were initialised to
the difference in y values, with the aim to get the model to recognize this
state as the velocity; to a rough estimate of z, obtained by finding the extra
acceleration due to the z term; and to an empirical Z found by taking the
difference between the observed acceleration and the forces arising from the

non-z terms.
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Figure 5.8: The transition functions for states 1 and 4, for the variational GP-
SSM trained on the reduced cart pole dataset. These two states essentially
function as an integrator for the force (which is the input state 7), encoding
state 1 as the position of the center of mass. The function is known with
great certainty, as the error bars (shown in faint black) are very tight around
the function.

After extensive experimentation, we found that pre-training the hyperparam-
eters while fixing the inducing inputs, then optimising the inducing inputs
separately, then finally optimising all the variables jointly could ensure that
the model did not quickly write off all the extra latent dimensions as noise.
The results in table 5.4l were obtained with different number of latent dimen-
sions. The most likely dimensionality is the dimensionality we would expect.
Referring back to the governing equation [£.22] we can see that knowledge of
both z and g is needed to calculate Z, which tallies with the fact that the
GP-SSM only gets a substantial increase in understanding when four latent

states are used, and not much of an increase with one, two or three.

The structure of the dependencies in the trained model is shown in figure [5.3]
Interestingly, it does appear to be able to pick up some of the latent state,

with a state 4 that doesn’t depend on y. This is exactly as we’d expect from

equation [£.22]

However, we wouldn’t necessarily expect to see the state 3 depend on state 1,
as we should be able to obtain z by integrating up state 3, without needing

to use state 1 directly at all. However, since only one state is observed, some
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Figure 5.9: An example of a transition function for a badly optimised model
of the reduced cart-pole. The transition function here has very high error
bars, which imply that the function merely adds noise to the latent states.
We can see how the model could shut down a GP in such a way if it wasn’t
providing any predictive power. In such a case we should note that the
‘observation noise’ in the system could be made from contributions from the
R matrix and the () matrix in the dead GP.
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Figure 5.10: Predictions from the variational GP-SSM and an order-2 AR
model. We see that both models are able to accurately capture the dynamics
of the system, able to predict several points forward into the future. We also
see that both methods are able to give a fairly consistent estimation of the
error in their estimates. The following two plots show a quantitative analysis
of the errors.
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Figure 5.11: RMSE for the predictions on the 3d cart-pole dataset, averaging
over forwards predictions from each time point in 10 test sequences. We see
that the GP-SSM has a clear advantage over the AR(2) in predicting the
position variable, but is comparable in the sin and cosine predicitons.
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Figure 5.12: Negative joint log probability for the two predictive methods,
averaging over forwards predictions from each time point in 10 test sequences,
predicting ¢ points into the future. We see that the GP-SSM’s predictions are
more precise and accurate at first, but that they start to become inaccurate
whilst underestimating the uncertainty in the predictions. The AR(2) model
does not make very precise predictions, but has a well-calibrated grasp of its
own certainty.
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Table 5.4: Successive models trained on a 400-timepoint subset of the
BoucWen dataset, with varying underlying latent dimension. We are able
to clearly see the model pick out the 4-dimensional case as the most likely.
This gives us further reason to think that the GP-SSM is picking out the
dynamics.

Latent Dimension Train £

1 -2280
2 -2285
3 -2300
4 -3790

‘mixing’ of the latent states is possible, and even expected. This could be

what is occuring here.

Figure 5.13: The structure of the model found by the GP-SSM when trained
on the Bouc-Wen dataset. The only variable that is coupled to the likelihood
is state 1. Although somewhat hard to interpret, it seems as if the model is
picking up the latent z state, with the state 4 (initialised with an estimate
of ), not depending on state 1, y, at all.

<

2 3

Unfortunately, forward predictions on this data set were not very good, with

the predictions diverging from the truth rapidly after a few timesteps for-

wards. This is shown in figure [5.3|
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The GP-SSM picks up a nonlinear transition function, albeit with a large

amount of uncertainty.

Figure 5.14
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Figure 5.15: Predictions from the Bouc-Wen dataset. For the ‘seed’ time-
series, 30 points were shown to the model, due to worries about the model
being able to pick up the states of the three latent variables with only a
handful of observations. Unforunately the predicitions are not very good,
with the values rapidly diverging from the observations. The model does
retain knowledge of its own uncertainty, which is very high.
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Chapter 6
Summary and Conclusions

We have demonstrated a principled method to infer the properties of dy-
namical systems, the doubly variational Gaussian process state-space model
(GP-SSM): combining previous work on variational approaches to GP-SSMs
with a further assumption of a Gaussian latent variable distribution which

allows a fully analytic lower bound on the marginal likelihood.

Previously unpublished work on this topic is put into context, and extended
to deal with testing and prediction, which can be achieved fully analytically.
We have shown that the variational GP-SSM is able to learn the dynamics
of complicated systems such as the cart-pole, and is also able to infer un-
derlying processes, such as integrating an impulse twice to attain a position,
and finding some underlying structure in the Bouc-Wen nonlinear system

identification dataset.

In a comparision to an autoregressive (AR) model, the GP-SSM was not
much better than the AR in a 5D cartpole problem, whilst being much more
costly to train and test. However, the system fared better than the AR model
when two of the underlying variables were hidden: it was able to infer their
existence and beat the AR model in initial predictions. While both the AR
and GP-SSM model performed badly after a dozen or so predictions, the

GP-SSM also drastically underestimated its own uncertainty (as is common
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in variational approaches to Bayesian learning). As in previous work with
VFE approximations, we find that progress is stymied by technical issues in
performing the optimisation, including the model getting stuck in local min-
ima, and sensitivity to initial conditions. However, some work with barrier
functions seems to show promise for slowing the training rate and helping

find a global minimum, even when initialisations are not specially chosen.

Future work will focus on ensuring robustness of the gradient descent opti-
misation of model parameters, hopefully developing a set of best practices of
barrier functions and training rates that work for all data sets, reducing re-
liance on intuition and ‘tricks’ in training the model. We will also clarify the
ability of the GP-SSM to learn underlying latent states, particularly look-
ing at the complexity of the model on very high-dimensional data, which we
didn’t consider at all. If the model can reduce dimensionality with the same
success as it can infer hidden states, the doubly variational GP-SSM could
succeed as a very generally applicable, interpretable and flexible learning

algorithm.
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